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Abstract

The pollution generated by accidental marine oil spills can cause persistent eco-

logical disasters and lead to serious social and economical damages. Numerical

simulations are a valuable tool to make proper decisions in emergency situation or

to plan response actions beforehand. In the early 1990’s, members of the University

Rovira i Virgili developed in this sense SIMOIL, a computational model capable

of predicting the evaporation and spreading of massive oil spills in coastal areas.

Among the rest of numerical models available, SIMOIL was characterised by two

original features:

• the application of a Eulerian model of the oil slick thickness dynamics, in-

stead of the most commonly used Lagrangian method of tracking separated

oil parcels,

• the advection-diffusion problem is discretized over a boundary-fitted coordi-

nates system. This method allows to capture in details the movement and

accumulation of oil along arbitrary shaped coastlines. The adaptability of this

approach contrasts with the restriction to simpler regions derived from the use

of Cartesian coordinates system in other models.

However, the use of SIMOIL was limited to regions where currents were already

known or could be determined by the potential flow approximation. The main ob-

jective of this work is to solve this issue by implementing a numerical model able

to predict coastal currents in generalised coordinates to increase the accuracy and

the range of applications of SIMOIL.

Specifically, a new coastal current modelling, based on the resolution of the shal-

low water equations in generalised coordinates, has been developed and validated

to improve both accuracy and applicability of SIMOIL. To establish the model of

coastal flow, the primitive ocean equations were integrated vertically over the depth.
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Then, the shallow water equations were formulated in function of the variables

vorticity and stream function, under the rigid-lid approximation. Consequently,

the pressure was eliminated from the equations and the number of equations to be

solved was reduced from six to two. Finally, a complete system of equations was

obtained and expressed in a generalised system of coordinates. The model was

specially designed to describe coastal oceanic flows over topography accounting

for Coriolis force, eddy viscosity, seabed friction and to couple with SIMOIL in

domain with complex boundaries.

The Thompson numerical method has been used to map physical domains with

curvilinear boundaries onto simpler computational domain where the system of

partial differential equations can be readily approximated by the method of finite

differences. The Akima bi-variate interpolation FORTRAN routine is employed

to interpolate over generalised meshes the sparse bathymetry measurements avail-

able. The complete space discretization of the system of shallow water equations

is second-order accurate using centred finite differences scheme. The discretization

of the convection term of the equation governing oil thickness dynamics has been

upgraded from first-order upwind to second-order upwind scheme. The diffusion

terms are all approximated with centred finite differences scheme. The time inte-

gration of the vorticity equation was made using the implicit second-order accurate

Crank-Nicolson scheme. The resulting large system of partial differential equations

was solved by successive over relaxation. The oil thickness equation is solved us-

ing the explicit fourth-order accurate Runge-Kutta method. Moreover, Open MP

parallel programming techniques have been applied to speed-up the solvers and to

reduce the additional computational cost of induced by the calculations of sea cur-

rents. Besides that, investigators recently demonstrated that the evaporation of oil at

sea surface is not totally regulated by the oil/air boundary-layer, as most of the cur-

rent models assumed, among them SIMOIL. As a result, the equations describing

the evolution of the physical properties of the oil have been rewritten accordingly.

Special attention was given to the verification of the code. First, well docu-

mented flows inside lid-driven cavities of three different geometries have been sim-

ulated numerically. Velocity profiles through the cavities were used to compare

with numerical and experimental velocity measurements and shown good agree-

ment with the literature. Two more benchmark simulations were performed to check

the open boundary conditions: the backward-facing step and the laminar plane wall

jet. In both cases the model provided results in excellent agreement with other au-
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thors. To complete the validation of the shallow coastal ocean model, the interaction

of a vortex with topography is studied at oceanic scale. In this configuration a cy-

clonic vortex is released in the vicinity of a steep slope. The vortex is forced to

move northwestward until it is deviated southwestward by the topographicβ-effect

created by the slope. As the vortex is moving southwestward, a meandering cur-

rent heading North is created above the slope. The numerical model allowed to

observe and reproduce well these phenomena as described in other experimental

and numerical studies.

Lastly, the new complete version of SIMOIL, coupling the shallow water model

and the oil slick model, has been applied to the study of two accidental oil spills.

The first case is a hypothetical massive leakage from the Repsol floating dock in the

vicinity of the port of Tarragona under typical autumn wind conditions. A compar-

ison is made between the previous version of SIMOIL, when currents were calcu-

lated from a potential flow approximation, and the version developed in this work,

where the currents are calculated according to the shallow water theory. The main

result, as expected, is that this new version is more appropriate to simulate coastal

oil spills under moderate wind intensities (force 4 or less on Beaufort scale), be-

cause an accurate estimation of the coastal currents is necessary to determine the

trajectory of the oil slick. The second case treats the major oil spill ever occurred

in the Mediterranean: the 2006 Lebanon war oil spill. Nearly 20,000 tons of heavy

fuel oil were released into the sea after the bombing of Jiyeh power plant located

on the Lebanon coast at 30 km to the south of Beirut. The Mediterranean Opera-

tional Oceanography Network was requested to provide operational support to the

authorities by monitoring the oil displacements by satellite observations and set-

ting up oil spill simulations. Simulations were also run with the previous potential

flow version of SIMOIL. The results demonstrated that the new version, based on

the shallow water equations, is capable of producing accurate predictions for more

than a few days with such complex coastline. The code developed in this work

successfully and accurately reproduced the observed trajectory and landings of the

oil slick up to 10 days after the beginning of the spill. The coastal currents and

recirculations were predicted with great resolution, allowing the forecasting of oil

slicks movements, oil accumulation on beaches and evaporation to coincide with

the observational data collected for the pollution assessment and the coordination

of response actions.
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As a conclusion, the code developped in this work results to bea fundamental

improvement of SIMOIL. It has been validated to predict time and space evolu-

tion of oil spills. It can be considered a suitable and valuable assessment tool for

contingency planning of oil spills in coastal areas.
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Resumen

La contaminacíon generada por derrames accidentales de hidrocarburos en el

mar puede causar desastres ecológicos duraderos y daños socio-ecońomicos. Las

simulaciones nuḿericas son una herramienta valiosa para tomar decisiones adecua-

das en situaciones de emergencia o para planificar de antemano las operaciones de

rescate y protección. En la d́ecada de los 90, miembros de la Universidad Rovi-

ra i Virgili desarrollaron SIMOIL, un modelo computacional capaz de predecir la

evaporacíon y la difusíon de vertidos masivos de petróleo en zonas costeras. Entre

todos los modelos nuḿericos existentes, SIMOIL destaca por dos caracterı́sticas:

• el uso de un modelo Euleriano de la dinámica del grosor de la mancha de

crudo, en lugar del ḿetodo Lagrangiano ḿas utilizado que consiste en seguir

la trayectoria de grupos de partı́culas de crudo independientes,

• el problema de advección-difusíon se discretiza en un sistema de coordenadas

generalizadas. Este método permite capturar detalles en el movimiento y la

acumulacíon de las manchas de petróleo a lo largo de costas cuya forma es

arbitraria. La adaptabilidad de este enfoque contrasta con la restricción a re-

giones de geometrı́as ḿas simples, cuando se utiliza sistemas de coordenadas

cartesianas.

Sin embargo, el uso de SIMOIL se limitaba a regiones donde las corrientes ya se

conoćıan o se pod́ıan determinar por aproximación de flujo potencial. El principal

objetivo de este trabajo es resolver este problema mediante la implementación de un

modelo nuḿerico capaz de prever las corrientes costeras en coordenadas curvilı́neas

para aumentar la precisión y el rango de aplicaciones de SIMOIL.

En concreto, se ha desarrollado y validado una nueva modelización de las co-

rrientes costeras, basada en la resolución de las ecuaciones de aguas someras en

coordenadas curvilı́neas, para mejorar la precisión y la aplicabilidad de SIMOIL.

Por una parte, para establecer el modelo de flujo en la costa, las ecuaciones pri-
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mitivas fueron integradas verticalmente sobre la profundidad. Posteriormente, las

ecuaciones de aguas someras se expresaron en función de las variables derivadas

vorticidad y funcíon de corriente, bajo la aproximación de pared rı́gida. Aśı, la pre-

sión fue eliminada de las ecuaciones y el número de ecuaciones a resolver se redujo

de seis a dos. Porúltimo, se obtuvo un sistema completo de ecuaciones formuladas

en un sistema de coordenadas curvilı́neas. El modelo fue diseñado especialmen-

te para describir los flujos oceánicos costeros teniendo particularmente en cuenta

la variabilidad de la batimetrı́a, la fuerza de Coriolis, la viscosidad turbulenta o

la fricción creada por el fondo marino, ası́ como el acoplamiento con SIMOIL en

dominios definidos por fronteras complejas. Por otra parte, las ecuaciones que des-

criben la evaporación de la mancha de crudo en SIMOIL han sido mejoradas. A

partir de resultados recientes se implementó un modelo de evaporación, basado en

mediciones de propiedades de destilación del crudo, ḿas relevante que el modelo

de Mackay usado anteriormente.

Para construir mallas generalizadas que se adaptan a la forma irregular de las

costas se usa el ḿetodo nuḿerico de Thompson. El sistema de ecuaciones diferen-

ciales que gobierna el flujo oceánico costero se discretiza en el dominio compu-

tacional aśı generado mediante el método de diferencias finitas. Las mediciones de

la batimetŕıa costera, muchas veces escasas, se interpolan en cada punto de la ma-

lla usando la rutina de interpolación bivariada de Akima. De esta forma se consigue

una discretización espacial de las ecuaciones de aguas someras de segundo orden en

la totalidad del dominio de cálculo. Para la ecuación correspondiente a la evolución

espacio-temporal del grosor de la mancha de crudo, también se ha incrementado

el orden de la discretización de los t́erminos convectivos usando un esquema up-

wind de segundo orden en lugar del primer orden previamente implementado. Los

términos difusivos siguen aproximados al segundo orden con un esquema de dife-

rencias finitas centradas. Para la integración temporal de la ecuación de vorticidad

se utiliza el esquema de Crank-Nicolson, de segundo orden e implı́cito. El com-

plejo sistema de ecuaciones resultante se resuelve mediante un método iterativo de

sobrerelajacíon sucesiva. La evolución temporal de la mancha se resuelve explı́cita-

mente con un ḿetodo de Runge-Kutta de cuarto orden. Desde el punto de vista de

la programacíon, se ha desarrollado todo el código en lenguaje FORTRAN, usan-

do directivas de ćalculo en paralelo Open MP para ordenadores multiprocesador

de memoria compartida para acelerar la resolución de los sistemas de ecuaciones.

El código resultante ha sido cuidadosamente verificado. Primero simulando casos
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bien documentados de flujos en cavidades bidimensionales de tres tipos de geo-

metŕıa. Los perfiles de velocidades obtenidos con el código son los mismos que los

resultados nuḿericos y experimentales que se encuentran en la bibliografı́a. Aśı se

demostŕo la correcta implementación del ćodigo y de las ecuaciones en coordenadas

generalizadas. A continuación, se simularon dos flujos en canales para comprobar

la correcta aplicación de condiciones de contorno abiertas: el flujo sobre un escalón

descendiente y el chorro laminar a lo largo de una pared. En ambos casos, el modelo

desarrollado aquı́ proporciońo resultados excelentes en concordancia con las demás

investigaciones tanto experimentales como numéricas. Para completar la validación

del modelo de oćeano costero, se estudió la influencia de la batimetrı́a sobre la tra-

yectoria de un remolino ciclónico a escala oceánica. En las simulaciones numéricas

se pudo reproducir con precisión el efecto topográfico β descrito en la literatura

tanto nuḿerica como experimental. En el hemisferio norte, se trata de la desviación

hacia el suroeste de la trayectoria del remolino ciclónico, inducida por la combina-

ción de la fuerza de Coriolis y la presencia de una pendiente fuerte en la zona oeste

de la cuenca oceánica. Este feńomeno se acompaña de la creación de una corriente

que oscila de un lado a otro de la pendiente.

Por último, la nueva versión completa de SIMOIL, integrando el modelo de

ecuaciones de aguas someras y el modelo de mancha de crudo, se aplicó al estudio

de dos vertidos de crudo en el mar. El primer caso es una hipotética fuga masiva

de crudo originada en la monoboya de descarga de Repsol, situada cerca del puer-

to de Tarragona, con condiciones meteorológicas t́ıpicas del otõno en esta región.

Se comparan la versión anterior de SIMOIL, con corrientes calculadas a partir de

la aproximacíon de flujo potencial, y la versión desarrollada en este trabajo, cu-

yo campo dińamico est́a calculado de acuerdo con la teorı́a de aguas someras. El

resultado principal, como era de esperar, es que esta nueva versión es ḿas apro-

piada para simular los vertidos de petróleo en la costa cuando la intensidad de los

vientos es moderada (fuerza 4, o inferior, en la escala de Beaufort). Esto se debe

a que, para determinar con detalle la trayectoria de la mancha de petróleo, es ne-

cesario determinar precisamente las corrientes costeras. El segundo caso es el del

mayor vertido de fueloil que se haya producido en el mar Mediterráneo hasta la

fecha: la marea negra consecuencia de la guerra del Lı́bano durante el verano del

2006. El vertido se produjo cuando unas 20000 toneladas de fueloil pesado se ver-

tieron en el mar después del bombardeo de la central térmica de Jiyeh, situada en

la costa de Ĺıbano 30 kiĺometros al sur de Beirut. La red mediterránea de oceano-
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graf́ıa operacional (MOON) fue encargada de proporcionar apoyo operacional a la

autoridades siguiendo el desplazamiento de la mancha mediante observaciones por

sat́elite y simulaciones nuḿericas de transporte de crudo en el mar con el código

MEDSLIK-CYCOFOS. Ambas simulaciones y observaciones se compararon con

simulaciones ejecutadas con la anterior versión de SIMOIL y con la nueva versión

del programa. Los resultados demuestran que la nueva versión es capaz de producir

predicciones precisas a más de 3 d́ıas en una costa tan compleja. El código desa-

rrollado en este trabajo logró reproducir la trayectoria observada de la mancha de

petŕoleo aśı como su acumulación en la costa hasta 10 dı́as despúes del bombardeo.

Las corrientes costeras y las zonas de recirculación asociadas fueron descritas con

la máxima resolucíon, permitiendo que la predicción de la trayectoria, del aterri-

zaje y de la evaporación del fueloil coincidiera con las observaciones recolectadas

durante los hechos.

A modo de conclusión, el ćodigo desarrollado en este trabajo resulta ser una

mejora fundamental de SIMOIL. Se ha validado para predecir la evolución tempo-

ral y espacial de los vertidos masivos de petróleo en el mar. Se puede considerar

como una herramienta valiosa y adecuada para el asesoramiento y la planificación

de acciones correctivas en caso de vertidos de petróleo cercanos al litoral.
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Nomenclature

Roman Symbols

a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Earth equatorial radius(a= 6,378,137m)

a+,a−,b+,b− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coefficients for the upwind scheme

Ao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Area of oil on the sea surface (m2)

AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Horizontal eddy viscosity(m2/s)

AV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vertical eddy viscosity(m2/s)
~b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Buoyancy force (kgm/s−2)

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Concentration of pollutant (mol/m3)

cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sound velocity in the ocean(cs = 1,500m/s)

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oil thickness diffusion-like coefficient (s−1)

Cbottom
D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Seabed friction coefficient

Cwind
D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wind drag coefficient

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Friction function

D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diffusive term

DU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Viscous dissipation of momentum term

DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal diffusion term

DS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Salinity diffusion term

e . . . . . . . . . . . . . . . . . . . . . Earth WGS84 ellipsoid eccentricity (e= 0.08181919084)

E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Evaporative exposure (m3/kg)

f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coriolis parameter (s−1)

F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fraction of evaporated oil

F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Spatial discretization operator

g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Gravity acceleration (m/s2)

gi j . . . . . . . . . . Metric tensor relating generalised to Cartesian system of coordinates

h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oil slick thickness (m)

H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Depth (m)

J . . . . . . . . Jacobian of the transformation from Cartesian to generalised coordinates
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k . . . . . . . . . . . . . Momentum transfer coefficient between oil and sea water (kg/m2s)

K . . . . . . . . . . . . . . . . . . . Mass transfer coefficient between oil and atmosphere (m/s)

L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Length of reference (m)

M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Meridional radius of curvature (m)

~n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vector normal to a surface

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normal radius of Curvature (m)

P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pressure (Pa)

r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radial distance (m)

R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Radius of reference(m)

Re= UL
ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reynolds number

Ro= U
f L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rossby number

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Residual function

S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Salinity (mol/m3)

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Time (s)

~t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vector tangent to a surface

T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature (K)
~U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Velocity vector in Cartesian coordinates (m/s)

Uavg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average velocity (m/s)

Umax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum velocity (m/s)

~v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Horizontal velocity vector (m/s)
~Uh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Depth integrated velocity vector (m/s)

(O,x,y,z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cartesian system of coordinates (m)

Greek Symbols

α,β,γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Geometric coefficients of the metric tensor

βS . . . . . . . . . . . . . . . . . . . . . . . . . . . Haline contraction of sea water (βS = 10−3psu−1)

βT . . . . . . . . . . . . . . . . . . . . . . . . Thermal expansion of sea water (βT = 2×10−4K−1)

δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boundary layer thickness (m)

∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Increment

(O,ε,η,z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generalised system of coordinates

θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angle (radian)
~∇() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Vector operator gradient of a scalar
~∇ ·~() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Divergence of a vector field
~∇×~() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Curl of a vector field

κΦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eddy diffusivity of tracerΦ
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λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Longitude (oE)

µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Similarity variable (µ= y
δ )

ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kinematic viscosity (m2/s)

ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Density (kg/m3)

Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sum

τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress (Pa)

ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Latitude (oN)

Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Scalar

ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stream function (m3/s)

ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vorticity (/s)

Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Earth rotation rate (Ω= 7.3×10−5s−1)

Subscripts/Superscripts

( )0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refered to quantity of reference

( )a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Refered to air

( )o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Refered to oil

( )w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refered to sea water

( )ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Refered to stream function

( )ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refered to vorticity

( )h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refered to depth averaged quantity

( )i j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refered to covariant ij component

( )i j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refered to contravariant ij component

( )(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refered to previous iteration

( )(k+1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refered to current iteration

( )n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Normal direction

( )n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refered to previous time step

( )n+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Refered to current time step

( )∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intermediate quantity
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Chapter 1

Introduction

1.1 Motivation

Major oil spills caused by oil tanker accidents attract periodically the attention

of media, spreading abroad pictures of oil-coated birds and damaged landscapes.

So today, the public, policy makers, oil companies and tanker owners, expect the

best achievable response to oil spills: it has to be scientifically based and the result

of a process of contingency planning and extensive training at all levels.

As pointed out in the preface of the last report of the U.S. National Academies

on the subject of oil spills [1], planning and decision making in oil spill response

requires a good understanding of:

• the physical and chemical evolution of the properties of oil,

• the local environmental conditions,

• the ecological sensitivity of the coastal area,

• the effectiveness of response methods and technologies.

Since 40 years, numerical simulations of the transport of the pollution caused by

hazardous material in the sea are available. Dynamic oil weathering and oil trajec-

tory models have been developed to predict oil behaviour over time and are being

used as a decision-making tool in actual and fictitious spills. In the 1990’, members

of the ECOMMFIT1 group, developed a numerical model of oil spills, SIMOIL2,

which was successfully validated for impact assessment and contingency planning.

1Experimentacío, Computacío i Modelitzacío en Mec̀anica de Fluids i Turbul̀encia, Mechanical
Engineering Department, Universitat Rovira i Virgili, http://ecommfit.urv.es

2http://ecommfit.urv.es/SIMOIL

1
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2 CHAPTER 1. INTRODUCTION

In the last decade, the improvements in computer power and storage have made

possible the integration of many data sources in the simulations, such as weather,

wind, current and water temperature, chemical and physical properties of the oil.

The development of instrumentation, in fields like bathymetric survey and veloc-

ity measurement, yield data that are critical for setting up and test the model. The

availability of parallel processing make possible to run linked complex flows with

bathymetry and weathering models at a high resolution. Finally, the development

of an accurate coastal hydrodynamic model for SIMOIL is the main motivation for

the present work.

1.2 Background

1.2.1 Sources of oil in the sea

The expression“marine oil spills” refers to accidental releases of oil into the

sea. According to the trends in energy usage, oil production and consumption are

not likely to decrease much in the future. The threat of oil pollution is increasing

accordingly, especially when one considers that nowadays 30% of the crude oil

produced worldwide comes from offshore exploitation.

OCEANA, an international organization for the protection of the oceans, reported

that in 2003 the global transportation of crude oil moved 1,600-1,800 million tons

a year mainly to the European Union and the United States and more than 1,000

million tons of oil was transiting European waters each year [2]. Since 1974, the

ITOPF3 has maintained a database of oil spills from ships, covering all accidental

spillage except those resulting from acts of war. According to this database [3] and

in average over the last 30 years, around 300 oil tanker accidents occur every year,

causing between 240,000 and 960,000 tons of hydrocarbons to be dumped into the

oceans.

The 20 major oil spills from ship tankers are listed in table 1.1. The Exxon Valdez,

although being the 35th, is included because of its impact on media, and thus, its

influence on the maritime industry policy makers.

As can be seen in figure 1.1, the overall amount of petroleum released to the ma-

3International Tanker Owners Pollution Federationis a not-for-profit organisation of tanker
shipowners and pollution insurers, which is providing technical services related to ship-source spill
of hazardous material in the marine environment
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A
C

K
G

R
O

U
N

D
3

Position Ship Name Year Location Spill Size (tons)

1 Atlantic Empress 1979 Off Tobago West Indies 287,000
2 ABT Summer 1991 700 nautical miles off Angola 260,000
3 Castillo de Bellver 1983 Off Saldanha Bay, South Africa 252,000
4 Amoco Cadiz 1978 Off Brittany, France 223,000
5 Haven 1991 Genoa, Italy 144,000
6 Odyssey 1988 700 nautical miles off Nova Scotia, Canada 132,000
7 Torrey Canyon 1967 Scilly Isles, UK 119,000
8 Sea Star 1972 Gulf of Oman 115,000
9 Irenes Serenade 1980 Navarino Bay, Greece 100,000
10 Urquiola 1976 La Corũna, Spain 100,000
11 Hawaiian Patriot 1977 300 nautical miles off Honolulu 95,000
12 Independenta 1979 Bosphorus, Turkey 95,000
13 Jakob Maersk 1975 Oporto, Portugal 88,000
14 Braer 1993 Shetland Islands, UK 85,000
15 Khark 5 1989 120 nautical miles off Atlantic coast of Morocco 80,000
16 Aegean Sea 1992 La Coruña, Spain 74,000
17 Sea Empress 1996 Milford Haven, UK 72,000
18 Katina P. 1992 Off Maputo, Mozambique 72,000
19 Nova 1985 Off Kharg Island, Gulf of Iran 70,000
20 Prestige 2002 Off the Spanish coast 63,000
35 Exxon Valdez 1989 Prince William Sound, Alaska, USA 37,000

Table 1.1: Major oil spills from ships since 1967, Courtesy of ITOPF [3]
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4 CHAPTER 1. INTRODUCTION

Figure 1.1: Quantities of oil spilled in the sea between 1970 and 2010. Courtesy of ITOPF
[3]

rine environment is decreasing with years. This reflects technological advances in

marine transportation (double-hulls tankers) and oil and gas production techniques,

as well as the implementation of more rigorous regulations for safer transportation

procedures. However, releases from extraction (see figure 1.2) and transportation

of petroleum represent less than 10 percent of inputs from human activity. As no-

ticed in [1], chronic releases during consumption of petroleum, which include urban

runoff, polluted rivers, and discharges from commercial and recreational marine

vessels, contribute up to 85 percent of the human load to North American waters.

These releases can pose significant risks to the sensitive coastal environment where

they most often occur.

1.2.2 Weathering and transport of marine oil spill

Once spilt at sea, oil fate and behaviour are governed by complex, interre-

lated physicochemical processes generally known as“weathering process”. The

weathering depends on oil properties, hydrodynamic conditions and environmental

conditions. Advection, spreading, evaporation, oxidation, dissolution, dispersion,

emulsification, bio-degradation and sedimentation are terms describing the possible

evolution of the weathering of an oil spill. Figures 1.3 [4] and 1.4 [5] are schematic

representations of the fate of a crude oil spill showing changes in the relative im-
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1.2. BACKGROUND 5

Figure 1.2: Satellite view of a massive oil spill spreading towards Mississippi Delta on
April 25th 2010, after an explosion occurred on April 20th 2010, on Deepwater Horizon rig.
Image credits : NASA/GSFC, MODIS Rapid Response

portance of weathering processes with time.

The modelling of the oil weathering and the eventual response actions is essen-

tial to understand the toxicity and the trajectory of a spill. Many studies addressing

this issue have been summed up in recent scientific reviews about environmental

pollution [5,6,7,8].

Spreading: It is the result of an increase of the area of the oil slick. Spreading is

governed by the balance between gravity and viscous forces. While gravity

tends to extend the surface of oil slick and reduce the thickness of the film,

friction between water and oil tends to limit the spreading of the slick. Evap-

oration and emulsification, by increasing oil viscosity, increase friction with

time. Fay-type spreading models, based on the gravity-viscosity balance, are

used by many algorithms to predict the thickness and the area of the slicks,

even if it is widely recognized that spreading is not fully represented by Fay

equation [7]. Another transport-and-spreading model, describing much bet-

ter the slick thickness dynamics, was developed by Benque et al. [9]. This

model remained unnoticed in the oil modelling community because of the

high computational cost it represented at that time [10]. Later, this model has

been adapted to curvilinear coordinates in SIMOIL [11].

Advection: The net transport rate and direction of a spill is the sum of the influ-
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Figure 1.3: Weathering of oil slicks

Figure 1.4: The relative importance of weathering processes with time. Courtesy of ITOPF
[3]
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1.2. BACKGROUND 7

ences of winds, waves, surface currents and oceanic turbulent diffusion. As

most of the oil usually remains in the sea surface, oil moves mainly horizon-

tally forced by wind and sea-current contributions. Advective currents can

be computed from current atlases (static approximations), live meteorologic

observations, buoys trajectory or hydrodynamic modelling (dynamic approx-

imations).

Evaporation: An oil is composed of many different substances. Oils behaviors at

sea are usually classified in 4 groups going from “non-persistent” (in purple

in figure 1.5) to “very persistent” oil (in red in figure 1.5), in function of the

physical properties of their compounds (waxes, small saturates, aromatics,

resins, asphaltenes) such as specific gravity (oil density relative to pure water,

often measured in◦API), distillation characteristics, viscosity and pour point.

Small saturates and aromatics are the most dispersible components of oils.

They are fairly soluble in water, but also evaporate rapidly. The other com-

pounds do not evaporate or disperse easily and use to stabilise in water-in-oil

emulsions under certain conditions [12, 13]. Figure 1.5 shows the different

behaviour of those groups. Mackay developed in 1980 a simple model of

the evaporation based on the elapsed time, the slick area, the wind speed, the

vapor pressure and the temperature. This model is still widely used [11] de-

spite its simplicity and the over-estimate of evaporation in the first hours and

under-estimation later on [14].

Emulsification: It is the process of mixing water droplets into oil, forming a

water-in-oil emulsion. The oil can take up until 80% of water, changing

drastically the density of the mixture which volume can expand up to five

times the original volume. It increases also dramatically the viscosity [13,15].

Reliable prediction of emulsification and the associated viscosity changes

presently relies on empirical observations, since established prediction meth-

ods have proved unreliable [7].

Entrainment: Oil can be transported vertically in the water column in the form of

oil droplets. It depends primarily on the wind conditions and the water depth

as wave breaking especially enhances the process. Another source of vertical

entrainment can be Langmuir circulation. It appears when the wind blows

strongly (>3 to 9 m.s−1) over the sea, creating polluted windrows: long oily

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL SIMULATION OF OIL SPILLS IN COASTAL AREAS USING SHALLOW  WATER EQUATIONS IN GENERALISED COORDINATES 
Guillaume Novelli 
T-1797-2011 



8 CHAPTER 1. INTRODUCTION

Figure 1.5: Volume of oil remaining on the sea surface in function of oil composi-
tion. Courtesy of ITOPF [3]

streaks, parallel to the wind direction, where the oil accumulate. In between

those streaks, the oil is entrained deep under the sea-surface. The largest

droplets will resurface while smaller ones may remain in the water column

to be advected, dissolved or absorbed by biota or to sediment. Entrainment

process is not represented in the majority of the models which neglect the

vertical movements of oil [5]. A notable exception is the MOSM4 [16, 10].

Using a model of the balance between breaking wave energy and oil droplets

buoyancy, thus the time evolution of the concentration of oil droplets in the

water column can be computed.

Dissolution: It depends largely on oil composition and interfacial area. Entrain-

ment of droplets enhance dissolution by increasing interfacial area between

the water and the oil droplets. It is a process relatively unimportant in de-

termining mass balance but very important in terms of potential biological

impacts.

Sedimentation: Oil-sediment interaction is not well documented. It depends on

4Multiphase Oil Spill Model
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1.2. BACKGROUND 9

the substract rugosity and its capacity of absorption, as well as on oil viscosity

or tide level.

Response Action: Four major response strategies are available to fight against

oil spills: chemical treatment, in-situ burning, mechanical recovery, and bio-

remediation. Dispersants and emulsion-breakers are used to break the emul-

sification process and enhance the dispersion rate. Blooms, like in the pic-

ture of figure 1.6, are used to confine the spill to be skimmed or adsorbed

and then mechanically recovered, or even directly burned at sea [17]. Nutri-

ments (nitrates, phosphates) can be added to the dispersants, to enhance the

reproduction of specific bacteria able to metabolise the lighter compounds of

petroleum. This is called bio-remediation. The OSCAR5 model has a module

devoted to oil recovery and chemical dispersant application actions, relating

environmental factors (such as winds and waves or available daylight) to ef-

fectiveness of mechanical cleanup [5,7].

The complexity of the processes involved in the oil spill problems is very clear. The

prediction of the consequences (biological and socio-economic impacts) is a further

step beyond the models discussed here.

1.2.3 Consequences of oil spills

As soon as the oil is released into the sea, evaporation in the atmosphere and

dispersion in the water column start. The ecological and socio-economic impacts

depend on the oil toxicity, time exposure, eco-sensitivity of the region and the re-

sponse capacity of responsible parties.

Oil-coated seabirds, fishes, marine mammals or even shellfish are known to be

affected, but the effects on plankton, at the first trophic level on the oceans food

chain, are not totally understood and quantified. Some habitats, such as exposed

rocky shorelines, recover quickly from oiling events. Other ecosystems, such as

mangroves, salt marshes, sea grasses and coral reefs, and polar habitats, are par-

ticularly vulnerable and sensitive to oil spills, and may take years to recover [17].

5Oil Spill Contingency And Response
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10 CHAPTER 1. INTRODUCTION

Figure 1.6: Oil spill confinement with blooms in Tarragona harbour.
Image credits: 2009-Ildefonso Cuesta
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According to ”Oil in the Sea” report [1], the biological effects of oil spills are usu-

ally acute. It means that the spills have short-term effects (from days to years) but

with high concentration of petroleum covering up to thousands of square kilometres.

From an economic point of view, a variety of human activities can be affected

by the pollution such as fisheries and tourist resorts. These sectors usually suffer

from income losses and property damages, and also need time to recover.

In addition, combat strategies also have a cost, economically and ecologically.

Chemical dispersants, used to increase the dispersion rate of oil slicks, are highly

toxic in shallow water environments and their use is forbidden near the coast [18].

The cost of the removal of oil can vary in a range from 20 to 200 US Dollars per

litre [12].

The financial appreciation of the consequences is of great interest as the re-

sponse has to balance the cost of the possible damages. A recent study of costs as a

function of spill size [19] reveals that :

• for very small spill (≪7 tons) under extreme weather conditions, the option

of “leaving for natural cleaning” should be recommended.

• for a range from medium (>7 tons) to large (>700 tons) spills up to 2200

tons, the total oil spill costs could be in a range from¤1.3 million to¤41.3

million.

1.2.4 Challenges for the best response

All the above statements confirmed that oil spills can have a severe impact. The

effects of an accidental release depend on many factors such as the oil quantity,

its weathering and trajectory, the vulnerability of ecosystems, and the ability to

implement the best response actions. When an oil spill occurs the primary concern

is the speed and direction of the oil drift relative to the location of sensitive areas.

The weathering of the oil is also important because it affects the behaviour of the

oil as well as the eventual environmental consequences of the spill.

The success in taking the best response decisions is determined by a series of

actions:

1. being able to predict the spreading and trajectory of the spill with time. This

requires forecasting and integrating the direction and speed of wind and cur-

rent in the area of interest;
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12 CHAPTER 1. INTRODUCTION

2. being able to collect in situ information about oil weathering, or to predict

changes in oil properties that will affect the cleanup response;

3. being able to assess the threat posed to marine ecosystems and coastal hu-

man activities, in areas known to be at risk from spills or chronic releases of

petroleum.

1.3 State of the art on oil spill modelling

Numerical modelling can provide support for rapid and informed decision-making.

By generating safe and accurate spill scenarios, it is the ideal tool for contingency

planning, response training and damages assessment.

1.3.1 Overview of oil spill models

Many numerical models now exist which simulate the movement or the weath-

ering of oil in the sea. The very first simplest models assumed oil remains at the

surface as an ellipse shaped slick simply advected by local winds. More sophisti-

cated models now reproduce additionally vertical dispersion of droplets and some

of the weathering processes and response actions, through parameters chosen to fit

empirical data when/where they exist.

Usually, the transport of contaminants without sources in a fluid flow is described

by anadvection-diffusionequation like equation (1.1), wherec is the concentration

of the pollutant.

∂c
∂t

+~∇ · (c~U)−~∇(~D ·~∇c)= 0 (1.1)

Advection(~∇ · (c~U)) of the pollutant is produced by the movement resulting from

current and wind forcing, whilediffusion(~D) is caused mainly by the turbulent fluc-

tuations of the fluid flow and molecular diffusion. The diffusion of pollutants uses

to be parameterized as a combination of horizontal (longitudinal and transversal)

and vertical components, proportional to the shear velocity and the water depth.

Despite the fact that most water quality models utilise a Eulerian approach for solu-

tion of theadvection-diffusionequation [20], because of the need to couple transport

and chemical kinetic equations to Eulerian hydrodynamic models, oil spill transport

models have been an exception to this practice adopting Lagrangian methods. Use
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1.3. STATE OF THE ART ON OIL SPILL MODELLING 13

of a Lagrangian approach is easily justifiable for oil droplet separate tracking in the

water column : the spill may be represented by a number of droplets. The diffusion

can be calculated by horizontal and vertical diffusivity in the water column, modi-

fied by the buoyancy of the oil droplets, using a random walk technique, appropriate

for Lagrangian Particle Tracking. This is the method employed for example by the

trajectory models GNOME, MOTHY, and OSCAR, briefly described in table 1.2.

However, unbroken slicks on the sea surface can be more accurately considered

within two continuous layered media, oil and water, both governed by Eulerian

Navier-Stokes equations. In [9], Benque et al. show a way to obtain a single non-

linear transport-and-spreading equation that predicts the temporal and spatial dy-

namics of the slick thickness. Recently, this model has been modified and adapted

within SIMOIL [11] and MOSM [10].

1.3.2 SIMOIL

SIMOIL is a computational code developed by members of the ECOMMFIT

group to simulate the temporal and spatial evolution of large marine oil spills spread-

ing under gravity-viscosity regime. The model has been applied to assess the effects

of fictitious accidents along the Costa Daurada of Tarragona and also to assess the

environmental impact of several offshore facilities along the Spanish coast.

The differential model of Benque et al. [9] has been modified to improve bound-

ary conditions modelling, especially for accumulation on the shoreline. Only the

slick movement is considered. The only changes allowed in the vertical direction

being the slick thickness. An important feature is that the code has been developed

in generalised coordinates in order to deal with the naturally complex geometry of

the coasts. The governing equation for the evolution of the oil thicknessh can be

obtained by combining the continuity and the momentum conservation equation,

which leads to the single equation :

∂h
∂t

+~∇ · (h~U)−C∇2h3 = 0 (1.2)

The combined actions of currents, tides and winds in the horizontal plane are in-

cluded in the advection term~∇ · (h~U). C is a diffusion-like coefficient (s−1) de-

pending on oil and water densities (respectivelyρo andρw in kg m−3) and onk, a

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL SIMULATION OF OIL SPILLS IN COASTAL AREAS USING SHALLOW  WATER EQUATIONS IN GENERALISED COORDINATES 
Guillaume Novelli 
T-1797-2011 



14
C

H
A

P
T

E
R

1.
IN

T
R

O
D

U
C

T
IO

N

Model Developer Specification
of oil

Has been used
for

Input Hydrodynamic Weathering
processes
included

Output

GNOME NOAA Various types
of oil

Oil spill trajec-
tory

Wind, lo-
cation, spill
amount

2D Weathering
factors asso-
ciated to each
type of oil

Trajectory

MOTHY Cedre and
Mét́eo-France

Boiling point
cut for evapo-
ration

Oil spill trajec-
tory analysis

2D currents,
winds, waves

Mét́eo-France
nowcast-
forecast data

Evaporation Trajectory

OSCAR SINTEF 200 separate
components
and more than
300 crude oils
and petroleum
products

Contingency
planning, en-
vironmental
risk analysis,
natural re-
source damage
assessment, oil
spill training
and response,
nowcast-
forecast
operations

oil type, re-
lease type,
winds, tem-
peratures,
coastlines,
bathymetry,
currents, eco-
logical habi-
tats, shoreline
types, sedi-
ments types

2D or 3D
currents from
hydrodynamic
models or
measurements.
Single point
or 2D wind
data from
models or
measurements

spreading,
advection,
entrainment,
dissolution,
resurfacing,
emulsification,
evaporation,
beaching,
oil recovery,
dispersants
application

Trajectory, rel-
ative success
of alternate
response
strategies,
linkage to
biological and
risk analysis
models

Table 1.2: Overview of some operational oil spill models
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1.3. STATE OF THE ART ON OIL SPILL MODELLING 15

momentum transfer coefficient between both phases (in kg m−2 s−1). ThenC reads:

C =
1
3

ρo(ρo−ρw)g
kρw

(1.3)

Evaporation is modelled following Mackay concept of evaporative exposure E

(m3 kg−1). It links ∆F , the fraction of oil evaporated, to the vapor pressure of oilP0

(atm), the area of oil on the sea surfaceAo (m2), the oil temperatureT (◦K), andK

(m s−1), a mass transfer coefficient between oil and the atmosphere increasing with

the wind velocityW (m s−1). Accordingly, it reads:

∆F = −∆EP0e−12F (1.4)

where

∆E = KAo(1−F)
Vm∆t
VsRT

(1.5)

with Vm being the molar volume of oil (in m3 mol−1) andVs the instantaneous total

volume of the spill (in m3), t is the time (in seconds),R is the gas constant (in atm

m3 mol−1 K−1) andK is defined by :

K = 0.0015W0.78 (1.6)

Therefore, SIMOIL allows the prediction of the trajectory of the slick along

shorelines with complex geometry. It is also capable of estimating the percentage

of the volume of the spill evaporated, beached and remaining on the sea surface.

1.3.3 Areas of improvement

Highly effective spill response requires oil models to improve on many aspects.

Models introduce major simplifications and neglect (with the exception of evapora-

tion) some important processes, such as emulsification, interaction with shorelines

and sediments, or biological effects. Often, physical and chemical processes happen

at a scale ranging from 10 to 10,000 meters. That is usually at the sub-grid scale

for hydrodynamic models, so the number of required parameters increases. These

parameters, such as the vertical mixing coefficient, are poorly understood and are
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16 CHAPTER 1. INTRODUCTION

selected, after laboratory observations or field data acquisition, in order to fit known

distributions of released tracer. Therefore, models have to be tuned.

The lack of knowledge about oil composition and the lack of high-resolution hydro-

dynamic data from diverse sources (or the incapacity to integrate them) are probably

limitations to the use of these models in real-time prediction of a spill, especially if

no in-situ observations are available.

Models are best at extrapolating spill trajectory from one set of sparse observations.

They are also useful in examining a possible range of spill scenarios arising from

different combinations of the parameters, helping in the preparation to decision

making and training to response actions in the field.

1.4 Objectives and Outline

1.4.1 Objectives

In order to improve SIMOIL predictions in terms of accuracy, reliability and

flexibility, the present research project was conducted with the following list of

objectives:

• To integrate a new hydrodynamic model designed for coastal flows at regional

scale in generalised coordinates

• To add interpolation routines to integrate sparse data into the simulation

• To improve the accuracy and speed-up of the simulations through OpenMP

parallelization of the code on multi-processors computers

1.4.2 Outline

For the sake of clarity the presentation of the research work is split into two

parts.

Part One focuses on the development of a model of coastal oceanic circulation.

Chapter 2 is an introduction to ocean dynamics. The main issues for its mod-

elling are discussed, including the hypothesis assumed for the description of Cori-

olis forces, dissipation and turbulence and shallow water flows at regional scale.
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1.4. OBJECTIVES AND OUTLINE 17

Then, special attention is paid to the concept of generalised coordinates to tackle

the problems of typical coast with a complex geometry. Finally, the vorticity and

stream function governing equations for coastal flows are derivated from the primi-

tive form of the Navier-Stokes equations.

Chapter 3 is devoted to the numerical methods for solving the algebraic systems of

equations resulting from discretization. The finite difference methods are employed

to approximate space and time derivatives. The treatments of non-linear terms,

boundaries and complex geometries are described. Interpolation techniques are in-

troduced later to obtain parameters values at every location. Briefly, some iterative

solution techniques are considered as well as the OpenMP parallelisation procedure.

Part Two is dedicated to the results of numerical simulations.

In Chapter 4, the importance of the verification process of the code is pointed out.

The results of several benchmarks cases are shown. To demonstrate the good im-

plementation of the solvers in FORTRAN 90, results of flow simulations are com-

pared with the literature in order to eliminate errors in programming or limitations

of the numerical methods. The shallow water model in generalised coordinates is

validated against experimental and numerical results of well documented cases of

engineering and oceanic flows.

The final stage of the thesis is achieved in Chapter 5 by the study of the coupling of

the hydrodynamic model to the upgraded version of the oil spreading and drifting

model SIMOIL. The complete forecasting system is then applied to two oil spill ac-

cidents: the first one off the coast of Tarragona and the second one along the coast of

Lebanon. These numerical simulations are carried out with two objectives: firstly to

confirm the validity of the forecasting system developed in this work by comparing

to data collected during the accidents, and secondly to show the improvement over

the previous version of SIMOIL.

In Chapter 6 the general conclusions of the thesis are drawn. Possible future devel-

opments are also adressed at the end of that chapter.
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Part I

NUMERICAL MODEL OF

COASTAL CIRCULATION

19
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Chapter 2

Modelling of Coastal Ocean

Circulation

The subject of this chapter is to set up a hydrodynamic model for flows in coastal

areas that will provide sea currents predictions to the oil spill model SIMOIL.

Ocean motions span a wide range of spatial and temporal scales under the influence

of body forces, surface stresses and turbulent dissipation. Those general mecha-

nisms of ocean motions are introduced in section 2.1.

The modelling of all the oceanic phenomena is beyond the scope of this work, how-

ever it takes only into account the flow features relevant on a regional scale. Section

2.2 details the assumptions associated to the rigid-lid shallow water model and ac-

cordingly, leads to the derivation of the governing equations for coastal circulation.

Section 2.3 is an introduction to curvilinear coordinates theory. It is an important

and original feature of the SIMOIL engine that is extended here to the hydrody-

namic model. Then the final expression of the equations of motion is derived for

any system of generalised coordinates.

2.1 Main features of ocean dynamics

2.1.1 Space and time scales

Stewart, in [21], recalls important concepts necessary to understand the funda-

mentals of oceans dynamics, specially the scales and the physics of oceanic flows.

Oceans and seas cover 70.8% of the surface of the earth. Oceanic dimensions range

21
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22 CHAPTER 2. MODELLING OF COASTAL OCEAN CIRCULATION

from 1500 km for the minimum width of the Atlantic to more than 13,000 km for

the north-south extent of the Atlantic and the width of the Pacific. The mean depth

is around 3800 m. The ratio between vertical and horizontal dimensions, or aspect

ratio, is small of the order of 10−3. It also means, from mass conservation, that the

ratio of typical vertical to horizontal velocity must be of the same order (or less due

to the stable density stratification of the ocean’s interior). This characteristic will be

used later to simplify the equations of motion.

Hence, oceans can be considered as a shallow layer of fluid on the earth surface. Ac-

tually several layers are often distinguished in function of their density profile and

dynamic specificity, as mentionned by Thorpe in [22]. On the top lies themixed

layer, stirred by the surface winds, with a depth on the order of 10 m where vertical

pressure gradients are considered equal to zero. Below lies theseasonal thermocline

where dynamics and mixing are dominated by seasonal temperature convection due

to the changes of the overlying atmosphere. Its depth is on the order of 100 m.

Below the seasonal thermocline, the mean temperature decreases linearly through

the main thermocline, also calledpycnocline, at depth 500–1000 m. This layer is

permanently stratified. At greater depth, above the abyssal plains, lies theabyssal

layer, where mean density continues to increase slowly as temperature decreases.

On the bottom lies another mixed layer due to the turbulence generated at sea bed,

with almost homogeneous density over the 5–60 m above the sea floor.

Density stratification and sea bed topography strongly separate the flows.

• At one extreme, theconveyor belt, the circulation in the oceanic interior

driven by thermohaline convection, is slow and steady in the meridional plane

evolving over climatic time scales: deep ocean current speed is typically of 1

m/day and water may remain in the abyss 1000 years before returning to the

surface.

• Boundary currents are currents flowing parallel to coasts such as the Gulf

Stream on the western edge of the Atlantic ocean on figure 2.1(a). Eastern

boundary currents are weak while the western ones tend to be fast narrow jets

with a periodicity of several months.

• At the other extreme of the time scale range, on the continental shelves, cur-

rents are dominated by tides and forced by winds, atmospheric heating and

influenced by sea-bed topography, dissipating a lot of energy in the upper

boundary layer at a period varying between hours and weeks. Such flows, for
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2.1. MAIN FEATURES OF OCEAN DYNAMICS 23

Process Length Scale Time Scale Rossby Number

Dissipative scales 1–2 mm ∼ 1 s ∼ 104

Vertical mixing 1–100 m minutes ∼ 102

Surface waves 1–100 m seconds ∼ 10 – 102

Internal waves 1–10 km mins–hrs ∼ 10−1 – 1
Mesoscale eddies 10–400 km weeks–months ∼ 10−1

Boundary currents 50–100 km months ∼ 10−1

Basin gyres 2000–15,000 km years ∼ 10−2

Ocean tides 100–1000 km 1/2 day, 1 day, . . .∼ 10−4 – 10−2

Tsunamis 100 km day ∼ 102

Table 2.1: Time and spatial scales of various oceanic phenomena. [23]

example those in the bay of Arcachon represented in figure 2.1(b), interact

dynamically with the morphology of the coastal zone, transporting sediments

and modifying continuously the shoreline and the bottom topography.

Table 2.1 gathers various oceanic phenomena and their scales. It also shows the

Rossby numberassociated to those flows. Large-scale flows are the one that are

influenced by earth’s rotation. One measure of the significance of rotation for a

particular motion is the Rossby numberRo. LetL, U and ϕ be, respectively, a

length scale, a horizontal velocity scale and the latitude, characteristic of the motion.

Ω = 7.3× 10−5s−1 being the earth’s rotation, the Coriolis parameter is given by

f = 2Ωsinϕ, and the Rossby number can be defined as follow:

Ro=
U
f L

(2.1)

Consequently, large-scale flows are defined as those with sufficiently largeL for Ro

to be order one or less. When describing those motions in a rotating coordinates

frame, the Coriolis force appears. The next section will show that whenever the

Rossby number is small, the Coriolis force is important in the balance of forces.

2.1.2 Driving forces

The processes described earlier are the result of the balance of a few forces,

distributed unevenly over the ocean volume: gravity, wind stress over the sea sur-

face, buoyancy –due to difference in density of sea water, and, in a rotating frame
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24 CHAPTER 2. MODELLING OF COASTAL OCEAN CIRCULATION

(a) Satellite view of the sea-surface temperature of the
Gulf Stream on April 18th 2005 showing cold meso-
scale eddies (purple rings) on the south part of the Gulf
Stream axis (white meandering current). Dark blue is
around 5◦C, purple is around 11◦C, white is around
23◦C. Image credits: NASA, MODIS Ocean Team

(b) Aerial view of Arguin sandbank formed, and trans-
formed daily, by the interaction of tidal and rip bound-
ary currents along the Great Dune of Pyla, at the south
channel entrance to Arcachon Bay, Gironde, France.
Image credits: G. Novelli

Figure 2.1: Illustration of different types of oceanic flows
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2.1. MAIN FEATURES OF OCEAN DYNAMICS 25

of reference, Coriolis force.

Gravity: It is the dominant force giving rise to pressure forces and tides. The

weight of the water in the ocean produces pressure, and the varying weight of

water in different regions of the ocean produces horizontal pressure gradients.

Changes in the gravitational pull exerted by the motion of the sun and moon

relative to earth, produce periodic tides, tidal currents, and tidal mixing in the

interior of the ocean.

Wind Stress: The stress exerted by the winds, blowing along the sea surface,

transfers horizontal momentum to the sea, creating currents in the upper part

of the water column. Wind blowing over waves on the sea surface leads to

an uneven distribution of pressure over the waves. The pressure distribution

transfers energy to the waves, causing them to grow into bigger waves.

In [21] and [22], the wind stressτwind is calculated from:

τwind = ρaC
wind
D W2

10 (2.2)

whereρa = 1.3 kg/m3 is the density of the air,W10 is wind speed at 10 m

high, andCwind
D is a drag coefficient depending on the wind speed but also on

the wave height. Measurements ofCwind
D are based on measurements of tur-

bulence in the marine boundary layer. Generally those measurements are not

available and the physically correct calculation of the wind stress is not well

known. Modellers often admit that, for moderate breeze (force 4 on Beaufort

scaleW10∼ 7.7 m/s), wind-driven currents response is approximately 3 to 5%

of wind velocity 10 meters above the sea.

Buoyancy: Buoyancy is the upward or downward force,~b, acting on a parcel of

water (of densityρ) that is more or less dense than the surrounding water (of

densityρ0) at its level. It is defined as:

~b =~g
ρ0−ρ

ρ0
(2.3)

b is often referred to as the reduced acceleration due to gravity. The variations

of density in the ocean are due to three effects : the compression of water by

pressure (negligible even at maximum ocean depth), the thermal expansion,

if its temperature changes, and the haline contraction if its salinity changes.
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26 CHAPTER 2. MODELLING OF COASTAL OCEAN CIRCULATION

According to Vallis [24], these effects are approximated by the linear equation

of state:

ρ = ρ0

[

1−βT(T −T0)+βS(S−S0)+
P

ρ0c2
s

]

(2.4)

where subscript (0) corresponds to a measure of reference of ocean water,

βT ≈ 2×10−4K−1, βS ≈ 10−3psu−1 andcs ≈1500 m.s−1 is the velocity of

the sound in the ocean.

The density variations in the ocean are very small (∼2%) compared to the

mean density, but very important dynamically. For example, cold air blowing

over the sea cools surface waters causing them to be more dense than the

water beneath. The resulting buoyancy force causes the general circulation

between cold pole water sinking and moving southward to resurface at warm

equatorial regions. This force leads to oscillatory motions calledinternal

waves(see table 2.1) which may travel through the stratified oceanic interior;

or to convection and mixing in case of unstable stratification, like in the upper

layer of the ocean, exchanging heat, fresh water and momentum with the

atmosphere. On the shallow continental shelves, additional turbulent mixing

induced by the tidal flow over the seabed may cause the entire water column

to have a uniform density.

Coriolis: For large-scale flows (Ro≪ 1), taking place on a rotating sphere, it is

convenient to introduce a co-rotating coordinates system which kinematically

eliminates the rigid planetary rotation. Working in a frame rotating atΩ rotat-

ing rate, allows identify the small deviations from earth’s rotation of ocean’s

motions known as currents. Then, the Coriolis force, 2~Ω×~U , is the dominant

force that arises from motion in the accelerating rotating frame. The study of

the dynamics of large-scale oceanic flows must include the Coriolis force to

be geophysically relevant.

For example in [25], to show the importance of Coriolis acceleration, van

Heijst and Clercx consider a large-scale motion in a Cartesian rotating co-

ordinates system(x,y,z) wherex axis is pointing eastern,y northern andz

vertically upward. In this system, the planetary rotation vector is decom-

posed as~Ω = (0,Ωcosϕ,Ωsinϕ), and a velocity vector as~U = (u,v,w). Like

in section 2.1.1 it is reasonable to assume thatw≪ u,v. In this approach, the
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2.1. MAIN FEATURES OF OCEAN DYNAMICS 27

components of the Coriolis term become

2~Ω×~U = (− f v, f u,−2Ωucosϕ) (2.5)

where f = 2sinϕ is the Coriolis parameter mentioned earlier in section 2.1.1,

expressing that the effect of the planet’s rotation varies with latitudeϕ. This

gradient inf (ϕ) can be approximated by applying a Taylor expansion around

a reference latitudeϕ0. The f -plane approximation is obtained by taking only

the first term of the expansion :f = f0 = 2sinϕ0. It is valid for flows with

limited extent in the north-south direction. By including the next term of the

expansion, one obtains theβ-plane approximation:

f = f0 +βy (2.6)

whereβ = 2Ωcosϕ0
R , with R the radius of the globe. At mid-latitude (ϕ0 = 45◦)

f0 ≈ 10−4s−1 andβ ≈ 2.10−11m−1s−1.

L andU being a length scale and a horizontal velocity scale, respectively, then

for general circulation, extending over thousands of kilometers in the north-

south direction, nearly steady and very slow, the order of the total acceleration

would be
DU
Dt

= o(1)⇔ ∂U
∂t

+U · (∇U) = o(1) (2.7)

and then for the relative acceleration

∂U
∂t

= O(U · (∇U)) ⇔ ∂U
∂t

= O

(

U2

L

)

(2.8)

while the order of horizontal Coriolis acceleration is estimated as:

2Ω×U = O( fU) (2.9)

finally the ratio of relative to Coriolis acceleration can be estimated by the

Rossby number as in eq.(2.1):

Ro=
U
f L
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28 CHAPTER 2. MODELLING OF COASTAL OCEAN CIRCULATION

It is now apparent that Coriolis acceleration becomes dominant for large-scale

flows. Further, in the absence of forcing and of dissipation, those flows are

calledgeostrophic, i.e. governed only by the balance between Coriolis accel-

eration and horizontal pressure gradients (see for example [21,23,26]).

Major long-lived oceanic currents, gyres and mesoscale eddies all depend strongly

on wind stress, thermohaline stratification and planetary rotation. But, if through-

out the interior of oceans flow is almost frictionless, on the contrary, at the shal-

low coastal boundaries, viscosity becomes important in mixing and dissipation pro-

cesses.

2.1.3 Dissipative forces

Although friction appears to be weak compared to Coriolis acceleration and

pressure gradient, it plays a significant role within the ocean’s boundary layers that

separate the interior flow from the atmosphere on top, the seabed at bottom and

the shoreline. Within these layers, the velocity changes rapidly from values typical

of the interior to match the velocity of the other side of the boundary: zero at a

solid boundary, or tens of centimeter per second at the sea surface for wind-driven

circulation.

Molecular viscosity: Ultimately, momentum is transfered by the collision of

molecules between them and their random motions. Molecular viscosity, or

dynamic viscosityµ = ρν, is the macroscopic representation of this process.

For example, for a flow in the(x,z) plane alongx axis,ρν is defined as the

ratio of the stressτxz tangential to the boundary and the shear velocityU(z)

at the boundary, as follows:

τxz = ρν
∂U
∂z

(2.10)

This frictional force is responsible of the dissipation of kinetic energy i.e. the

transformation of the kinetic energy into heat. But the length scales of ocean

motions are too great for molecular viscosity to be significant: as mentioned

in table 2.1, the dissipative scale driven by random molecular motions is on

the order of millimeters.
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2.1. MAIN FEATURES OF OCEAN DYNAMICS 29

Turbulence: Turbulence is described as rotational, energetic, eddying motions

generating large gradients of velocity (or heat or concentration of solute) at

small scales (1mm–1cm), promoting and enhancing dramatically viscous dis-

sipation (or diffusion) process. The result is the dispersion of momentum,

heat and solute, at rates far higher than those of molecular process alone.

Given the characteristic velocity gradient (∼10−1ms−1) through ocean’s av-

erage depth (∼4km) and kinematic viscosity (ν≈ 10−6m2s−1), the typical

ocean’s Reynolds number defined as:

Re=
UL
ν

(2.11)

can be estimated to be at least on the order of 108−−109. Hence the nat-

ural state of ocean is turbulent and it is expected to exhibit a wide range of

turbulent scales. Breaking of surface and internal waves, buoyancy plumes

resulting from surface cooling or haline diffusion due to evaporation, surface

and bottom shear flows, are examples of motions leading to turbulent mixing

within the various layers of the ocean.

By considering large-scale flows as a superposition of an averaged (spatially

or temporally) component and a fluctuating turbulent contribution, it is pos-

sible to derivate a formulation of virtual turbulent stresses : theReynolds

stresses. By analogy with kinematic molecular viscosity in equation (2.10),

aneddy viscosity(or eddy diffusivity for diffusion of heat or solute)Az can be

defined as follows:

τxz = ρAz
∂U
∂z

(2.12)

Values for the eddy viscosities (Ax Ay Az) can be roughly estimated from

direct measurements in the oceanic boundary layers, but, as properties of the

flow, they may vary a lot spatially and temporally. In general, due to the

stable density stratification of the water column, vertical mixing needs much

more energy than horizontal mixing. In [21] are reported calculations and

direct measurements of vertical eddy viscosity showing values ranging from

∼ 10−5 to∼ 10−3 m2s−1, while horizontal eddy viscosity values are on order

of 10 to 100 m2s−1.

Bottom stress:Bottom stress (τbottom) arises from seabed topography and bottom

boundary layer effects. It is usually parameterized using a drag coefficient,
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30 CHAPTER 2. MODELLING OF COASTAL OCEAN CIRCULATION

Cbottom
D , like in equation(2.2) for wind stress:

τbottom= ρ0C
bottom
D U2

h (2.13)

whereρ0 is the depth averaged density of seawater,Uh represents the speed

of the flow at a specified distance from the seabed (commonly 1 m), or the

depth-averaged current in the shallow seas of the continental shelf. The value

of Cbottom
D is about 2.5×10−3 [22] and can be expressed as a function of an

empirical roughness parameter, such as Chezy’s or Manning’s coefficients.

The world of physical oceanography is very wide and not all of its aspects could

have been covered here. For the modelling purpose of the present work, a limited,

but significant, number of issues were presented.

2.2 Mathematical modelling

2.2.1 Ocean primitive equations

Based on Navier-Stokes equations, the fundamental equations for oceanic flows

are in the form of a coupled set of partial differential equations that represent the

conservation of momentum in a viscous fluid on the rotating earth. Together with

mass conservation (the continuity equation), heat and salt conservation laws, they

form a closed system of equations for oceanic dynamics. As the density variations

are very small within the ocean, those equations are usually subject to the Boussi-

nesq approximation and assume the incompressibility of the flow, which excludes

sound and shock waves propagation of the study, as well as the hydrostatic ap-

proximation, which implies that vertical pressure gradients are due only to density.

Boussinesq approximation consists in neglecting the effect of density differences on

momentum, except in the term multiplying the gravitational acceleration~g in order

to account for buoyancy effects.

In vectorial form, theocean primitive equationsdescribed by Bryan in [27], are
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2.2. MATHEMATICAL MODELLING 31

given by:

~∇ ·~U = 0 (2.14)

∂~U
∂t

+
[

~U ·~∇
]

~U = −
~∇P
ρ

+~b−2~Ω×~U + ~DU +~F (2.15)

∂T
∂t

+
[

~U ·~∇
]

T = DT +FT (2.16)

∂S
∂t

+
[

~U ·~∇
]

S = DS+FS (2.17)

ρ = ρ0 [1−βT(T −T0)+βS(S−S0)] (2.18)
∂P
∂z

= −ρg (2.19)

where~U is the three-dimensional velocity vector that can be decomposed as a

horizontal velocity vector~v and a vertical componentw such as~U = (~v,w), P

is the pressure,~b is the buoyancy defined in equation (2.3) withg = 9.81ms−2,

Ω = 7.3×10−5s−1 is the earth’s angular velocity defined earlier.~DU (respectively

DT andDS) stands for the viscous dissipation term (respectively diffusion for tem-

perature and salinity). The assumption made, for the exchange of horizontal mo-

mentum (respectively temperature and salinity) from the sub-grid scale to the grid

scale, is a Laplacian friction (AH∇2U) using an eddy viscosity (respectively diffu-

sivity) parameterAH (respectivelyκT andκS) with a magnitude much larger than

the molecular values.~F (FT andFS) represents any additional forcing term (e.g.

wind forcing, heat fluxes, precipitation or evaporation).T is the temperature,S is

the salinity,ρ is the density of sea water,ρ0 = 1035kgm−3 is the depth averaged

value of ocean density (or Boussinesq density).

Equation (2.14) expresses the continuity for an incompressible fluid, equation (2.15)

is the momentum balance equation, equations (2.16) and (2.17) are the equations for

potential temperatureT and salinitySas active tracers as they are coupled to equa-

tion (2.15) through equation (2.18) under the Boussinesq approximation. Equation

(2.18) is an expression for the equation of state givingρ = ρ(ρ0,T,S) and used for

the calculation of the pressureP with the hydrostatic equation (2.19).
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2.2.2 Limitations of ocean modelling

CFD1 techniques are now widely used to simulate engineering and environmen-

tal fluid flows by numerically solving these equations [20, 21, 23, 28]. However,

compared to industrial applications, the use of CFD for ocean modelling is a chal-

lenging task considering the large scales involved and the inherent uncertainties

associated to the representation of turbulence and usually, the poor knowledge of

boundary conditions. It is then important for an ocean modeller to understand what

phenomena are being represented or resolved in the model and what scales are be-

ing parameterized, and more importantly are being imperfectly represented. Here

are listed the principal issues related to the resolution of coastal ocean models.

Turbulence modelling: Different CFD techniques can be used to solve numeri-

cally the various possible forms of the Navier-Stokes equations.

The most fundamental solution method, which consists in resolving all the

turbulence until the viscous scales of the flow, is referred to as theDirect

Numerical Simulation (DNS). In practice, at the high Reynolds number and

typical spatial scales involved, DNS of oceanic flows remains computation-

ally unfeasible.

Large Eddy Simulation (LES)is a technique that filters spatially Navier-Stokes

equations. The large eddies are resolved while the sub-grid scale (scale of mo-

tions smaller than the grid resolution) is parameterized. LES is a relatively

new field in coastal ocean modelling and its use is limited to domain scales

less than about 2 km in length per 30 m in depth [29].

A common approach to model turbulent flows is to use theReynolds Aver-

aged Navier–Stokes (RANS)equations that represent the random character of

turbulence with a statistical method. This has the advantage that a relatively

coarse computational grid may be employed. However, large-scale complex

unsteady oceanic flows are still difficult to solve and the RANS equations are

often simplified by local equilibrium assumptions, parameterized using eddy

coefficients in order to reduce the dimensions of the problem. [20,29].

Regional scale and open boundary conditions:Ocean circulation above conti-

nental shelves is of special interest for oil spill trajectory predictions. Con-

tinental shelves are shallow regions, typically∼ 200 m deep per∼ 100 km

1Computational Fluid Dynamics
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width, wide open to the ocean, and strongly tied dynamically to the basin,

to the variations of the atmospheric conditions and to astronomical tides. In

regional modelling, to solve the system of equations (2.15)–(2.19), it is nec-

essary to prescribe artificial boundary conditions (flux of various quantities

such as momentum, heat and passive tracers) along the open lateral bound-

aries of the domain. This is a difficult problem that modellers have been try-

ing to solve in the last 30 years [30,31]. A suitable open boundary condition

is the one that, through the boundary, can evacuate the information coming

from inside the domain, integer information from outside the domain, and

make the model solution compatible with it. Different approaches can be

used, for example convective boundary conditions, to avoid the reflection of

information propagating outward the domain or to force the model with ex-

ternal data (from coarser models predictions or observations). Often these

approaches consist in simplified equations that may propagate errors in the

model solution. The simplest way to damp these errors is then to locate the

open boundary as far as possible (depending on the computational resources

and the model resolution) from the area of interest.

Initialization and forcing: Operational models, used to predict contaminant trans-

port for example, require extensive observational data for initialization, forc-

ing at boundaries, and parameterization of subgrid-scale phenomena. Un-

fortunately the sets of measurements of bathymetry, currents velocity, tem-

perature, salinity, and turbulence are sparse (with the notable exception of

abundant surface data remotely collected by satellite), and can contain signif-

icant and poorly known errors. This aspect directly affects the quality of the

predictions as the introduced uncertainties may be compensating, interacting

and non-linear. Consequently, there may be many combinations of models

and parameters that fit the available data equally well [20].

It suggests that special care is required to represent complex coastal flows on re-

gional scale with CFD. A successful simulation relies on the understanding of the

simplifications introduced in the model, the quality of the grid, the numerical tech-

niques implemented to solve the governing equations and the quality of the data

used to parameterize and validate the model.
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2.2.3 Derivation of the hydrodynamic model

The intended application of the model for the transport of surface oil spill above

continental margins, and the computational pre- and post-processing capabilities

available, account for the choice of a particular simplified representation of the hy-

drodynamics of coastal sea currents.

The model is derived from the vertical integration of the ocean primitive equa-

tions (2.15)–(2.19) under the rigid-lid approximation. The rigid-lid streamfunction-

vorticity method is then employed to eliminate the pressure from the equations and

enforce the non-divergence of the velocity field. Therefore the system of equations

describing the flow is considerably simplified, containing only 2 equations to be

solved instead of 6 in the primitive formulation, making consequently the numeri-

cal solution of the problem faster and more efficient.

2.2.3.1 Depth-averaged Navier-Stokes equations

It is assumed that the coastal ocean can be approximated as a shallow, vertically

homogeneous, rotating fluid layer of densityρ0 flowing over topography: the Cori-

olis acceleration can be important, the aspect ratio of the motion is small and the

density stratification is absent. The shallow water equations governing such a flow

are obtained by integrating over the depth the primitive ocean equations (2.15)–

(2.17) under the assumption of incompressibility and constant density. The integra-

tion takes place from the bed ,z= H, to the free surface,z= η, defined in figure

2.2, and all the parameters are expressed in terms of depth-averaged values.

Here, the depth-averaged velocity~Uh = (Uh,Vh) is defined by:

Uh =
1
h

Z η

H
u∂z ; Vh =

1
h

Z η

H
v∂z (2.20)

The momentum equation (2.15) can be easily integrated over the depth to give:

∂~Uh

∂t
+
[

~Uh ·~∇
]

~Uh = −h
~∇P
ρ0

−2~Ω×~Uh +~Dh
U +~Fh (2.21)

Dh
U =

R η
H AH∇2U∂z represents the depth averaged dissipation of horizontal momen-

tum at sub-grid scales.~Fh are surface forcing terms resulting from the integration
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Figure 2.2: Sketch of a shallow layer of fluid with a free surface. The heightη is the
deviation from a resting ocean state, andH < 0 is the vertical position of the layer bottom.

of the frictional shear stress at the bottom and surface of the water column:

~Fh =
(~τwind−~τbottom)

ρ0h
=

∆~τ
ρ0h

(2.22)

.

The buoyancy disappeared from the equation asρ0 is constant and uniform. For

the same reason temperature and salinity are not coupled dynamically to momentum

and are transported by the flow like any passive tracerφ as in the following equation:

∂φ
∂t

+
[

~Uh ·~∇
]

φ = Dh
φ +Fφ (2.23)

The vertical integration of the continuity equation (2.14) and the non orthogonal

flux condition at the bottom yield to:

∂h
∂t

+~∇ ·
(

h~Uh

)

= 0 (2.24)

The shallow water equations are (2.21) and (2.24).
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2.2.3.2 Rigid-lid approximation

The key assumption with the rigid-lid approximation is that the ocean surface

heightη is fixed

η ≡ 0 ; h = H (2.25)

This assumption eliminates the gravity waves associated to vertical displacements

of the full water column.

A related assumption is to set the vertical velocityw at the surface to zero,

w(z= 0) = 0 (2.26)

In such way, the free surface effects are neglected (∂h
∂t = 0), and the depth-integrated

continuity equation under the rigid lid assumption renders:

~∇ ·
(

H~Uh

)

= 0 (2.27)

It should be noted that these last two assumptions also implies that the upper bound-

ary is effectively closed to surface water flux. This choice, as it limits strongly the

ocean-atmosphere interactions, would not be satisfactory for large scale oceanic

modelling as it eliminates some fundamental motions of the circulation, as men-

tionned by many authors [21,22,27].

2.2.3.3 Vorticity and streamfunction formulation

The depth integrated flowHUh is non divergent, thus it is possible to derivate
~Uh from a volume transport streamfunction~ψ:

~Uh =
1
H

~∇×~ψ (2.28)

Therefore the difference between two isolines of the streamfunctionψ can be inter-

preted as the vertically integrated volume transport between those lines.

As pointed out by Grau in [32,33], to eliminate the pressure from the momentum

equation (2.21), it is sufficient to derive the time evolution of vorticity. For two-

dimensional domains, the Helmholtz transformation defines the vorticity~ω as:

~ω = ~∇×~Uh and ~∇ ·~ω = 0 (2.29)
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It should be noted that~ω = (0,0,ωz) and~ψ = (0,0,ψz) have only one vertical com-

ponent and can be treated as scalar (ωandψ) from now on. Introducing equation

(2.28) into equation (2.29) yields to a Poisson-like equation for the streamfunction:

ω = −1
h

∇2ψ+
1
h2

~∇h·~∇ψ (2.30)

Now, taking the curl of the depth-integrated momentum equation (2.21) and apply-

ing the definition of vorticity of equation (2.29), after some algebraic developments

and rearrangements, the equation for the transport of vorticity is obtained:

∂ω
∂t

+~Uh ·~∇(ω+2Ω)=
ω+2Ω

h

(

~Uh ·~∇h
)

+Dh
ω +

(

~∇×~Fh

)

·~k (2.31)

This is the vorticity equation for an incompressible fluid over topography in rotating

coordinates. (ω+ 2Ω) is called theabsolute vorticity, a combination of relative

vorticity ω and planetary vorticity 2Ω. The second term on the left side represents

the convection of the absolute vorticity by the relative depth-averaged horizontal

velocity ~Uh. The pressure term disappeared from the right side because the curl of

a gradient (∇×∇P) equals zero.ω+2Ω
h is calledpotential vorticity.Dh

ω represents

the depth-averaged production, diffusion or dissipation of vorticity at small scales

(Dh
ω =

R 0
H AH∇2ω). The last term of the right side of equation (2.31), the curl of the

depth integrated surface minus bottom stresses
(

~∇×~Fh

)

·~k, represents the vorticity

production or dissipation due to friction of the water column with the upper and

lower boundaries. It can be noticed that, in the absence of dissipation, the equation

can be simplified and rearranged as:

D
Dt

(

ω+2Ω
h

)

= 0 (2.32)

which expresses the conservation of potential vorticity, an important notion in geo-

physical fluid dynamics as it explains how large-scale atmospheric and oceanic

flows acquire (or lose) vorticity when their latitude and/or depth change.

In summary, this rigid-lid streamfunction-vorticity model allows for the descrip-

tion of shallow turbulent rotating flows, as long as gravity waves and buoyancy are

not dominant motions. With this model of only two equations, and applying the

appropriate boundary conditions, the vorticity field can be obtained from equation

(2.31), and then the corresponding streamfunction can be calculated from equation
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(2.30). Once the flow field(ω,ψ) has been totally solved, the velocities can be

recovered analytically from the streamfunction with equation (2.28).

2.2.3.4 Initial conditions

The initialization of the model only requires values of the velocity field. The

vorticity can be calculated by equation (2.29) and then the streamfunction can be

found by solving the Poisson equation (2.30). The velocity field can be initialized

at zero (for most of the validation tests), or from interpolation between known ve-

locities (or velocity profiles) at certain locations.

2.2.3.5 Boundary conditions

The regional model of coastal ocean is bounded by complex coastlines and the

rest of the ocean at its lateral sides, bottom topography at its base and air-sea inter-

face at its top.

Bottom and top boundaries are defined by the surfacesz = H andz = η = 0.

Through these boundaries the ocean can exchange heat, fresh water, salt and mo-

mentum. However on time scales of a few days these fluxes are so weak that they

can be neglected. This approximation is reflected in the constant density hypothe-

sis and the rigid-lid approximation. Only the frictional processes are parameterized

(see the wind and bottom stresses formulations in equations (2.2) and (2.13)).

Along the coastline it is assumed that:

1. there is no flow normal to any solid boundary, wich means no flow through

the shoreline. It implies that:

~n· ~Uh = 0⇔~n·~z×~∇ψ = 0⇔~t ·~∇ψ = 0 (2.33)

where~n is a unit vector orthogonal to the boundary and~t is tangential. This

constraint says that the streamfunction is constant along the coastline.

2. There is no flow parallel to a solid boundary, which means no slip at the

shoreline. The no-slip vorticity boundary condition is derived from vorticity

definition equation (2.29) in function of the velocity~Uh.

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL SIMULATION OF OIL SPILLS IN COASTAL AREAS USING SHALLOW  WATER EQUATIONS IN GENERALISED COORDINATES 
Guillaume Novelli 
T-1797-2011 



2.2. MATHEMATICAL MODELLING 39

The treatment of the open lateral boundaries has to be taken carefully. Several

methods are implemented in the model that allow information to enter or leave the

domain without contaminating the solution in the area of interest:

Inflow condition: whenever velocity profiles or flow rates are available they are

assigned at the entrance of the domain.

Entrainment condition:when there is no indication about the flow crossing a

boundary, the entrainment condition defined Kanna and Das in [34] is used.

It states that normal velocity gradient is zero:

~n·~∇Uh = 0 (2.34)

Outflow condition:in the downstream direction several outlet boundary conditions

have been tested depending on the flow configuration.

• It is sometimes possible to assume that the domain is periodic. For

example when the main flow remains at the same latitude (zonal flow)

and when the topography of the bed is similar at the entrance and at the

exit of the domain, then one can assume the periodicity of the flow:

~U in
h = ~Uout

h and ωin = ωout (2.35)

• Another simple condition is to assume that streamwise gradients of~Uh

andω are zero:

~n·~∇Uh = 0 and ~n·~∇ω = 0 (2.36)

• For unsteady problems, the best suited boundary condition for moving

structures out of the computational domain was the convective boundary

condition defined by Grau [35] and successfully applied more recently

in [36,37] :
∂ω
∂t

+Un
h ∇n(ω) = 0 (2.37)

whereUn
h = ~Uh ·~n and∇n = ~∇ ·~n.
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To compute the flow field in a coastal region of the oceans, the system of vec-

torial equations formed by equations (2.21), (2.30) and the boundary conditions,

has to be projected and discretized on a system of coordinates. A boundary-fitted

coordinates system has the advantage to conform to the naturally complex shape

of natural coastlines and leads to a simple formulation of the boundary condition

equations.

2.3 Generalised coordinates framework

The choice ofgeneralised(or curvilinear, orboundary-fitted) coordinates is nat-

ural in this context because at the origin of this project, the oil slick transport model

had already been projected and discretized on this system of coordinates [11, 38].

The generalised coordinates system are often used to calculate flows in complex

geometries. Since the grid lines follow the boundaries, the boundary conditions

formulations are simplified. The grid can also be adapted to the flow, following the

streamlines to enhance the accuracy. A generalised mesh allows to control the grid

spacing in the domain in order to concentrate points in the regions of interest and

have an efficient and accurate computation of the flow.

The projection on a curvilinear coordinates system also have several drawbacks.

For instance, the differential operators in generalised coordinates are much more

complex and the transformed equations contain more terms thereby increasing the

difficulty of programming and the computational costs.

2.3.1 Curvilinear coordinates system

The basic idea of boundary conforming curvilinear system is to have some co-

ordinate line coincident with each boundary segment. The other curvilinear co-

ordinate will vary monotonically along the orthogonal boundary line. The use of

coordinate line intersection to define the grid points allows to define a fixed com-

putational Cartesian grid (see figure 2.3) where the system of partial differential

equations (2.21) and (2.30) has been transformed so that the curvilinear coordinates

replace the Cartesian coordinates as the independent variables. In this section, the

relationships between the physical(x,y,z) and the computational(ε,η,z) coordi-

nates are established.

It is assumed that there is a unique, single-valued, functional relationship between
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Figure 2.3: Conforming coordinates transformation

the generalised coordinates and the physical coordinates, in which case each grid

line is a line of constant coordinateε j (with j = 1,2,3 andε1 = ε, ε2 = η, ε3 = z):

T : ε j = ε j(x,y,z). The elements of the transformation matrix are defined by:

T i
j =

∂xi

∂ε j
(2.38)

This transformation is valid only if the JacobianJ of the transformation verifies:

J = det

(

∂xi

∂ε j

)

6= 0 (2.39)

It is then convenient to define the metric tensorgi j , which relates the increment in

distances in the Cartesian coordinates(x,y,z) in the physical space, to the changes

in distance in the generalised coordinates(ε,η,z) in the computational space (figure

2.3):

gi j =
∂xk

∂εi

∂xk

∂ε j
(2.40)
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The metric tensor covariant componentsα, γ, β andJ can be defined as:

α = g22 =

(

∂x
∂η

)2

+

(

∂y
∂η

)2

(2.41)

γ = g11 =

(

∂x
∂ε

)2

+

(

∂y
∂ε

)2

(2.42)

β = g12 = g21 =
∂x
∂ε

∂x
∂η

+
∂y
∂ε

∂y
∂η

(2.43)

J =
(

αγ−β2)
1
2 =

∂x
∂ε

∂y
∂η

− ∂x
∂η

∂y
∂ε

(2.44)

For tensor manipulations, the contravariant formulation of the metric tensor com-

ponents gives:

g11 =
α
J2 (2.45)

g22 =
γ
J2 (2.46)

g12 = g21 = − β
J2 (2.47)

The transport equations exhibit several differential operators like the curl of a vector

(~∇×~A), the divergence of a vector (div~A) and the Laplacian of a scalar (∇2 f ) which

expressions are given here:

~∇×~A =
Ei jk

J
(gkpAp), j =

Ei jk

J
Ak, j (2.48)

~∇ ·~A = Ai
,i =

1
J

∂(JAi)

∂εi
(2.49)

∇2 f =
1
J

∂
∂ε j

(

Jgi j ∂ f
∂εi

)

(2.50)

whereEi jk is the permutation symbol and a third order contravariant tensor, taking

on the values± 1 according asi jk is an even or odd permutation of 123 and is zero

if any of i, j andk are equal, following the tensorial notation of Aris [39]. More de-

tails about the covariant differentiation of tensors and index notations can be found

in [32,33,37,39].
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2.3. GENERALISED COORDINATES FRAMEWORK 43

2.3.2 Governing equations in generalised coordinates

It is assumed that a boundary-fitted coordinates system (ε,η,z) has been defined.

The governing equations (2.21) and (2.30) can be expressed in generalised coordi-

nates using the differential operators described by equations (2.38)–(2.50).

Velocity

Cartesian coordinates all have physical dimensions of length but in general this

cannot be expected of curvilinear coordinates. For non-orthogonal coordinates, the

definition of the physical components is not simple. It is easier to formulate the

equation for the transport of vorticity in function of the contravariant (Uε
h,Uη

h ) com-

ponents of the velocity. These components are related to the cartesian physical

components(Ux
h,Uy

h) by the following equations:

Uε
h =

∂y
∂η

J
Ux

h +
− ∂x

∂η

J
Uy

h (2.51)

Uη
h =

−∂y
∂ε

J
Ux

h +
∂x
∂ε
J

Uy
h (2.52)

Ux
h =

∂x
∂ε

Uε
h +

∂x
∂η

Uη
h (2.53)

Uy
h =

∂y
∂ε

Uε
h +

∂y
∂η

Uη
h (2.54)

These equations allow to switch from real velocities to computational velocities

(and vice-versa) to initialize the calculations when a real velocity field is known or

inversely to recover the real velocities at the end of a calculation.

Sometimes it is the stream function field that is known and the velocities can be

calculated applying equations (2.28) and (2.48):

Uε
h =

1
JH

∂ψ
∂η

and Uη
h = − 1

JH
∂ψ
∂ε

(2.55)

Continuity

With all the terms arranged on the left hand side, the continuity equation (2.30)

expressed in generalised coordinates reads:

hω+

[

α
J2

∂2ψ
∂ε2 +

γ
J2

∂2ψ
∂η2 − 2β

J2

∂2ψ
∂ε∂η

+C
∂ψ
∂ε

+D
∂ψ
∂η

]

= 0 (2.56)
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where the auxiliary functionsC andD are defined by:

C =

(

A− α
hJ2

∂h
∂ε

+
β

hJ2

∂h
∂η

)

(2.57)

D =

(

B− γ
hJ2

∂h
∂η

+
β

hJ2

∂h
∂ε

)

(2.58)

and functionsA andB are defined by:

A =
1
J

[

∂
∂ε

(α
J

)

− ∂
∂η

(

β
J

)]

(2.59)

B =
1
J

[

∂
∂η

( γ
J

)

− ∂
∂ε

(

β
J

)]

(2.60)

Transport of Vorticity

To simplify the expression, only the seabed friction terms is considered in this ex-

pression of the equation for the transport of vorticity in generalised coordinates:

∂ω
∂t

= −Uε
h

∂(ω+2Ω)

∂ε
−Uη

h
∂(ω+2Ω)

∂η
(2.61)

+
ω+2Ω

h

(

Uε
h

∂h
∂ε

+Uη
h

∂h
∂η

)

+νH

[

α
J2

∂2ω
∂ε2 +

γ
J2

∂2ω
∂η2 − 2β

J2

∂2ω
∂ε∂η

+A
∂ω
∂ε

+B
∂ω
∂η

]

−Cbottom
D

J

[

∂
∂ε

(

β
|Uh|

h
Uε

h +α
|Uh|

h
Uη

h

)

− ∂
∂η

(

γ
|Uh|

h
Uε

h +β
|Uh|

h
Uη

h

)]

where

|Uh| = (gi jU
iU j)1/2 =

[

Uε
h(γUε

h +βUη
h )+Uη

h (βUε
h +αUη

h )
]1/2

(2.62)

Equations (2.56) and (2.61), along with the appropriate initial and boundary con-

ditions, form a closed system of equations describing shallow turbulent and rotat-

ing coastal oceanic flows. Although this streamfunction-vorticity formulation is

complex in generalised coordinates, it is specially adapted to the requirements of

complex geometry systems and oceanic flows features.
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Chapter 3

Numerical Methods

A transformation of the continuous physical space into a discrete computational

domain is necessary to solve the discrete system of differential equations estab-

lished previously. This chapter describes the numerical methods used in the numer-

ical simulations of coastal oceanic flows.

Section 3.1 explains the generation of the curvilinear mesh and the procedure used

to interpolate the bathymetry over the grid.

The governing equations for the coastal flow, along with the initial and boundary

conditions, are discretized by means of a Finite Differences Method (FDM) of sec-

ond order accuracy in space and in time. The numerical scheme to solve the gov-

erning equation of the oil slick movement is upgraded from second to fourth order

in time and from first to second order in space. The spatial discretizations, the time

advancement schemes and the solvers are presented in section 3.2.

Finally, in section 3.3, the solvers have been implemented following the Open MP

specifications to allow running the code on shared-memory computers, and conse-

quently speed up the resolution of the equations.

3.1 Computational domain

As seen in chapter 2, coastal ocean flows and spreading of oil slicks can be de-

scribed by partial differential equations. The numerical solution of such equations

requires the discretization of the field into a collection of points or cells. The differ-

ential equations are approximated by a set of algebraic equations and this system of

algebraic equations is then solved on a computer. As pointed out by Ferziger and

45
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46 CHAPTER 3. NUMERICAL METHODS

Peric [28], the accuracy of numerical solutions is directly dependent on the quality

of discretizations and interpolations used.

3.1.1 Curvilinear grid generation

The basic idea is to generate a curvilinear coordinate system that covers the

domain of the marine area with coordinate lines coincident with the boundaries.

For this purpose, a module of SIMOIL is used. Basically, it is a FORTRAN routine

based on a numerical procedure from Thompson et al. [40] which consists in:

1. Specification of the coordinates of the boundaries of the domain for the gen-

eralised grid generation.

2. Numerical solution of the Poisson equations for the stream functionΨ and

velocity potentialΦ corresponding to a potential (inviscid and irrotational)

flow passing through the domain:

∇2Ψ = P (3.1)

∇2Φ = Q (3.2)

P andQ are functions controlling the space in between, and the orientation of

the isolines ofΨ andΦ. This system of equations is discretized by means of

finite differences with a central scheme of second order accuracy and solved

by the successive over relaxation (SOR) methodology.

3. Calculation of the geometric coefficients (α,β,γ,J,A,B) at each point of the

new grid.

4. Iterative procedure until a near-orthogonal grid is obtained.

The streamlines and lines of constant potential constitute a truly orthogonal co-

ordinate system. This process allows to distribute the coordinate lines smoothly,

achieving near-orthogonality specially close to the boundaries, and to concentrate

lines in regions of strong gradients. The application of boundary conditions is easy:

conditions involving normal derivatives can be represented by one-side differences

expressions along the line emerging from the boundary. The accuracy deteriorates

if the departure from orthogonality is too large. In such a case, it is convenient
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3.1. COMPUTATIONAL DOMAIN 47

Figure 3.1: Marine chart with latitude and isobath of Portofino area

to cut the domain in several sub-domains, then to generate separately the coordi-

nate system of each sub-region, and finally to patch them together to form a com-

plete system. An illustration can be seen in figures 3.1 and 3.2 for the study of the

Promontorio di Portofino area. The computed grid is generated by the intersections

of the lines of the boundary-fitted coordinate system.

3.1.2 Interpolation of bathymetry

Bathymetrystands for the measurement of the spatial variability of the bottom of

oceans, seas and lakes. Several techniques can be used to draw bathymetric charts,

representing the seafloor relief or depth contours. Ships equipped with multibeam

echosounders and Global Positioning System (GPS) allow collecting the sounding

and locations measurements which are later processed to produce a depths map of

the area. Aerial Laser scanning surveys (LIDAR/LADAR) can be conducted by

airplane. Satellites are also used to measure bathymetry. They can detect subtle

variations in sea level caused by undersea mountains or trenches.

In this work, the computational domain is generated from a digitalized marine

map. The latitude, the four boundaries and several isobaths (contour lines of equal
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48 CHAPTER 3. NUMERICAL METHODS

Figure 3.2: Generalised mesh of Portofino area made of 3 adjacent sub-domains

depths) are extracted from the map. The isobaths are collected as a set of data

points(X,Y) associated to depth data values (Z). Once the curvilinear mesh has

been generated, it is possible to construct a smooth interpolation function Z(X,Y)

which agrees with the given data and can be evaluated at every points of the grid.

This is done using a bivariate data interpolation library developed by Akima [41,42].

An illustration of the generation of a computational domain can be seen in the

figures 3.1, 3.2 and 3.3. The first picture shows the nautical chart in the area of

Promontorio di Portofino, close to Genova, Italy. The domain is defined by a red

rectangle, and a dozen of representative points per isobaths are selected. In figure

3.2 the domain has been divided into three subdomains, each of them meshed in-

dependently with coincident boundary points. The last figure 3.3 shows the final

curvilinear grid and its isobaths, superimposed over a three dimensional represen-

tation of the bathymetry of the computational domain.

3.2 Discretization of the governing equations

According to Lin and Chandler-Wide [43], the two types of numerical model

that are most used in solving the two dimensional depth-integrated shallow water

equations are the finite differences method (FDM) and the finite elements method

(FEM). In the case of FDM, rectangular finite difference grids are the most widely

used for the transport of contaminant. However, with such grids, curved boundaries
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3.2. DISCRETIZATION OF THE GOVERNING EQUATIONS 49

Figure 3.3: 3-D representation of the interpolated bathymetry in the area of Portofino. (The
depth is expressed in km)

are replaced by a staircase of grid points. Then it is necessary to choose between

a high density of points on the boundary or a poor resolution of boundary flows.

Boundary fitted coordinates systems tackle this issue allowing the use of FDM with

an accurate resolution even for irregular geometries.

3.2.1 Evaluation of spatial derivatives

The partial differential equations (2.56) and (2.61) are solved in the uniform

orthogonal computational space using second-order centred-difference approxima-

tions. Finite difference approximations of the partial derivatives appearing in the

partial differential equations are developed by writing Taylor series for the depen-

dent variable at several neighboring points using grid point(i, j) as the base point,

and combining these Taylor series to solve for the desired partial derivatives. A

functionΦ(ε,η) at grid point(i, j) is denoted by

Φ(εi ,η j) = Φi, j (3.3)
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50 CHAPTER 3. NUMERICAL METHODS

and his derivatives are denoted by

∂Φ(εi,η j)

∂ε
=

∂Φ
∂ε

∣

∣

∣

∣

i, j
and

∂2Φ(εi ,η j)

∂ε2 =
∂2Φ
∂ε2

∣

∣

∣

∣

i, j
(3.4)

Centred space finite difference approximations are shown below for several deriva-

tives:

First spatial derivative

∂Φ
∂ε

∣

∣

∣

∣

i, j
=

Φi+1, j −Φi−1, j

2∆ε
+o(∆ε2) (3.5)

Second spatial derivative

∂2Φ
∂ε2

∣

∣

∣

∣

i, j
=

Φi+1, j −2Φi, j +Φi−1, j

2∆ε2 +o(∆ε2) (3.6)

Mixed derivative

∂2Φ
∂ε∂η

∣

∣

∣

∣

i, j
=

Φi+1, j+1−Φi+1, j−1−Φi−1, j+1 +Φi−1, j−1

4∆ε∆η
+o(∆ε2,∆η2) (3.7)

On the boundaries, one-sided difference second order accurate formula are used:

On the lower boundary (whereη = 1,∀ε) for the first derivative

∂Φ
∂η

∣

∣

∣

∣

i, j=1
=

−3Φi, j +4Φi, j+1−Φi, j+2

2∆η
+o(∆η2) (3.8)

And the second derivative reads

∂2Φ
∂η2

∣

∣

∣

∣

i, j=1
=

2Φi, j −5Φi, j+1 +4Φi, j+2−Φi, j+3

∆η2 +o(∆η2) (3.9)

The partial differential equations (2.56) and (2.61) are solved in the uniform

orthogonal computational space using second-order centred-difference approxima-

tions.
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3.2. DISCRETIZATION OF THE GOVERNING EQUATIONS 51

3.2.2 Discretization of the hydrodynamic equations

3.2.2.1 Spatial discretization of the Poisson equation

Considering the Poisson equation (2.56), the second-order finite difference ap-

proximation at grid point(i, j) yields

(ω h)i, j +
( α

J2

)

i, j

ψi+1, j −2ψi, j +ψi−1, j

∆ε2 (3.10)

+
( γ

J2

)

i, j

ψi, j+1−2ψi, j +ψi, j−1

∆η2

−
(

2β
J2

)

i, j

ψi+1, j+1−ψi+1, j−1−ψi−1, j+1 +ψi−1, j−1

4∆ε∆η

+Ci, j
ψi+1, j −ψi−1, j

2∆ε

+Di, j
ψi, j+1−ψi, j−1

2∆η
= 0

with

Ci, j =

(

Ai, j −
( α

hJ2

)

i, j

hi+1, j −hi−1, j

2∆ε
+

(

β
hJ2

)

i, j

hi, j+1−hi, j−1

2∆η

)

(3.11)

Di, j =

(

Bi, j −
( γ

hJ2

)

i, j

hi, j+1−hi, j−1

2∆η
+

(

β
hJ2

)

i, j

hi+1, j −hi−1, j

2∆ε

)

(3.12)

and

Ai, j =
1

Ji, j







(α
J

)

i+1, j −
(α

J

)

i−1, j

2∆ε
−

(

β
J

)

i, j+1
−
(

β
J

)

i, j−1

2∆η






(3.13)

Bi, j =
1

Ji, j







( γ
J

)

i, j+1−
( γ

J

)

i, j−1

2∆η
−

(

β
J

)

i+1, j
−
(

β
J

)

i−1, j

2∆ε






(3.14)

3.2.2.2 Discretization of the vorticity equation

The equation (2.61) of transport of vorticity can be rewritten as:

∂ω
∂t

= F (ω)+C (Uh) (3.15)
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whereF is a spatial discretization operator that incorporates all of the right hand

side terms of equation (2.61) but the frictionC . C andF are defined as:

F = −Uε
h

∂(ω+2Ω)

∂ε
−Uη

h
∂(ω+2Ω)

∂η
(3.16)

+
ω+2Ω

h

(

Uε
h

∂h
∂ε

+Uη
h

∂h
∂η

)

+νH

[

α
J2

∂2ω
∂ε2 +

γ
J2

∂2ω
∂η2 − 2β

J2

∂2ω
∂ε∂η

+A
∂ω
∂ε

+B
∂ω
∂η

]

(3.17)

C (Uh) = −Cbottom
D

J

[

∂
∂ε

(

β
|Uh|

h
Uε

h +α
|Uh|

h
Uη

h

)

− ∂
∂η

(

γ
|Uh|

h
Uε

h +β
|Uh|

h
Uη

h

)]

Many authors describe the various temporal schemes that can be used to inte-

grate transport equations (forward Euler, backward Euler, Crank-Nicolson, A.D.I.
1, Adams-Bashforth) [44, 45]. Among them, the choice of Crank-Nicolson scheme

is adopted because the finite difference approximation of the time derivative is of

second order and it is an implicit and stable method. This choice can be com-

putationally expensive in two-dimensional domains, but the parallelization of the

algorithm is expected to compensate this drawback.

The time evolution is divided into a set of discrete time steps, each of size∆t. The

solution algorithm marches forward in time, computing a solution at each time step.

Temporal discretization involves the integration of every term in the differential

equations over the time step∆t. Then the Crank-Nicolson temporal scheme can be

shortly described by:

ωn+1
i, j −ωn

i, j

∆t
=

1
2

(

F n+1
i, j +F n

i, j

)

+Cn
i, j +o(∆t2,∆ε2,∆η2) (3.18)

whereωn refers to the value of vorticity at timet, andωn+1 at timet +∆t, and where

F n refers toF (ωn).

Using an intermediate vorticityω∗
i, j , one can write similarly:

ω∗
i, j −ωn

i, j

∆t
=

1
2

(

F ∗
i, j +F n

i, j

)

+Cn
i, j +o(∆t2,∆ε2,∆η2) (3.19)

1Alternating Direction Implicit
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3.2.2.3 Solvers and convergence criteria

Finite difference equations (3.10) and (3.18) have been obtained by replacing

the exact partial derivatives of the partial differential equations by finite difference

approximations of second-order accuracy. The solution of the partial differential

equation is obtained by solving the finite difference equations at every point of the

domain and at every time step. Iterative methods are known to be the simpliest, and

easiest to apply, for solving such large system of equations.

In this particular case a successive over relaxation (SOR) method was implemented

to solve the streamfunction in Poisson equation (3.10). For each simulation the

optimal over relaxation factorλψ was found by trial and error (1≤ λψ < 2) accel-

erating the resolution up to 10x. The SOR method, applied to the finite difference

approximation of the Poisson equation (3.10), is written in the following way:

ψ(k+1)
i j = λψRψ

(k+1)
i j +(1−λψ)ψ(k)

i, j (3.20)

where the superscript (k) denotes the previous iteration number and (k+1) the cur-

rent iteration number.Rψ
(k+1) is usually called the residual function. It is function

of the current values (atk+1) of (ψi−1, j ,ψi−1, j−1,ψi, j−1,ψi+1, j−1) and the previ-

ous iteration (k) values of(ψi+1, j ,ψi+1, j+1,ψi, j+1,ψi−1, j+1). This way, the most

recent values of everyψi j are used in all the calculations.

The Gauss-Seidel method, which is a limiting case of the SOR method when

the over-relaxation factorλω = 1, is employed to solve the transport of vorticity

equation (3.18). In this case the residual is expressed in function of(∆t,ωn,Cn,ω∗)

andλω is also function of∆t.

The iterative procedures approach the exact solution as the number of iterations

increases. As a measure of the convergence, three error parameters were monitored.

Erturk and Dursun in [46] solved very similar equations with the same SOR method,

and so the same error parameters are used here:

As in the limit the residual of the equations would be zero, the first error parameter

ERR1 is simply defined as the maximum absolute residual of the finite differences

equations. The convergence is considered achieved when the magnitude ofERR1

is less than 10−9 to ensure the accuracy of the solution.

The second monitored error parameterERR2 is the maximum absolute difference
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in the streamfunction, and in vorticity, between two iterations. It is given by:

ERR2ψ = max
(

abs
(

ψ(k+1)
(i, j) −ψ(k)

(i, j)

))

(3.21)

ERR2ω = max
(

abs
(

ω(k+1)
(i, j) −ω(k)

(i, j)

))

(3.22)

ERR2 gives an indication of the significant digit of the variable changing between

two iterations.

The third error parameterERR3 corresponds toERR2 but normalized by the value

of the variable at the previous iteration:

ERR3ψ = max



abs





ψ(k+1)
(i, j) −ψ(k)

(i, j)

ψ(k)
(i, j)







 (3.23)

ERR3ω = max



abs





ω(k+1)
(i, j) −ω(k)

(i, j)

ω(k)
(i, j)







 (3.24)

It represents the maximum percent change in streamfunction and vorticity at each

iteration.

Concerning the degree to which the solution of the coupled equations (2.56)

and (2.61) has reached the steady state of the flow, three more similar parameters

are monitored:ERR4steady,ERR5steady,ERR6steady.

ERR4steady= max
(

abs
(

ωn+1
(i, j)−ωn

(i, j)

))

(3.25)

ERR5steady= max

(

abs

(

ωn
(i, j)−ωn

(i, j)

ωn
(i, j)

))

(3.26)

ERR6steady=
∑ni ,n j

abs
(

ωn+1
(i, j)−ωn

(i, j)

)

nin j
(3.27)

ERR4steadyis an indication of the significant digit of the maximum vorticity value

changing between two time steps. Tipically, the steady state is attained when

ERR4steady< 10−6. ERR5steadyis like ERR4steadynormalized by the value of the

vorticity at the previous time step. It represents the maximum percent change in

vorticity between two time steps.ERR6steadyis like ERR4steadyaveraged over the

whole domain.
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3.2.3 Solving the equation for oil slick drifting and spreading

The computer code SIMOIL, which models the temporal and spatial evolution

of large marine oil spills spreading under gravity-viscosity regime, is based on the

equation (1.2) governing the evolution of the oil thicknessh recalled here:

∂h
∂t

+~∇ · (h~U)−C∇2h3 = 0 (3.28)

Where~U = ~Uh+0.03~W is the sum of the contribution of the depth averaged currents

and the wind velocity, andC is a diffusion-like coefficient (see its definition in

equation (1.3)).

In generalised coordinates equation (3.28) reads:

∂h
∂t

+
1
J

(

∂JhUε

∂ε
+

∂JhUη

∂η

)

= C

[

α
J2

∂2h3

∂ε2 +
γ
J2

∂2h3

∂η2 − 2β
J2

∂2h3

∂ε∂η
+A

∂h3

∂ε
+B

∂h3

∂η

]

(3.29)

with functionsA andB defined by:

A =
1
J

[

∂
∂ε

(α
J

)

− ∂
∂η

(

β
J

)]

(3.30)

B =
1
J

[

∂
∂η

( γ
J

)

− ∂
∂ε

(

β
J

)]

(3.31)

3.2.3.1 Convective and diffusive-like terms

For simplicity, the equation (3.28) can be written:

∂h
∂t

= f (t,h(t)) = −convec(t,h(t))+di f f (t,h(t)) (3.32)

The dicretization of the convective terms is upgraded since the previous version

of SIMOIL described in [11], from a first order accurate upwind scheme to a sec-

ond order upwind scheme (except near the boundary where the first order upwind

scheme is maintained).
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Defining

Pε = JhUε ; Pη = JhUη (3.33)

if Pε ≥ 0 then a+ = 1 and a− = 0

if not then a+ = 0 and a− = 1

and

if Pη ≥ 0 then b+ = 1 and b− = 0

if not then b+ = 0 and b− = 1

Then the convective terms of equation (3.29), denoted asconvec(i, j) is discretized

as:

convec(i, j) =
1

2∆J
[a+(3Pε(i, j)−4Pε(i−1, j)+Pε(i−2, j))+ (3.34)

a−(−Pε(i +2, j)+4Pε(i +1, j)−3Pε(i, j))+

b+(3Pη(i, j)−4Pη(i, j −1)+Pη(i, j −2))+

b−(−Pη(i, j +2)+4Pη(i, j +1)−3Pη(i, j))]

The diffusive-like term is discretized by means of second order centred differ-

ences as in the previous version of the code. Denoteddi f f (i, j), it reads:

di f f (i, j) = C(
( α

J2

)

i, j

h3
i+1, j −2h3

i, j +h3
i−1, j

∆ε2 (3.35)

+
( γ

J2

)

i, j

h3
i, j+1−2h3

i, j +h3
i, j−1

∆η2

−
(

2β
J2

)

i, j

h3
i+1, j+1−h3

i+1, j−1−h3
i−1, j+1 +h3

i−1, j−1

4∆ε∆η

+Ai, j
h3

i+1, j −h3
i−1, j

2∆ε

+Bi, j
h3

i, j+1−h3
i, j−1

2∆η
)
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3.2.3.2 Time advancement

To solve the initial value problem posed equation (3.28), a classical fourth order

explicit Runge-Kutta method is used. Though it is an explicit method requiring

small time steps, it is interesting because it is very accurate, stable and easy to

implement.

The time integration is made of four consecutive intermediate steps denoted with

(∗) to end up with the new value of thicknesshn+1 one time step later:

h∗n+1/2 = hn +
∆t
2

f (tn,h
n), (3.36)

h∗∗n+1/2 = hn +
∆t
2

f (tn+1/2,h
∗
n+1/2), (3.37)

h∗n+1 = hn +∆t f (tn+1/2,h
∗∗
n+1/2), (3.38)

hn+1 = hn +
∆t
6

[ f (tn,h
n)+2 f (tn+1/2,h

∗
n+1/2)+ (3.39)

2 f (tn+1/2,h
∗∗
n+1/2)+ f (tn+1,h

∗
n+1)]

3.3 Parallel computing

The centred finite differences schemes and the iterative procedures require a

high number of cells and calculations to ensure the accuracy and the stability of the

solution of the equations. This makes this code demanding in CPU usage. Parallel

computing is a solution that, by splitting the computational work between several

processors working simultaneously, allows to complete a task faster than computing

the same task sequentially. There are roughly two categories of parallel computers

depending on how the CPU access the memory:

• Shared memory computersare made of at least two processors connected to

one another through the same memory module. The shared memory is used

to exchange information between processors.

• Distributed memory computersare made of at least two processors, each one

with is own private memory. To exchange information, processors have to

pass messages to one another through a communication network.

Open MP directives are used to implement parallel programming to solve the

hydrodynamic equations in shared memory computers. Only the part of the code
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corresponding to iterative solvers mentioned earlier have been parallelized by split-

ting the computational domain into two sub-domains with approximately the same

number of nodes. Then the work load is shared almost equally (in the optimal

configuration) between two processors allowing to speed up the resolution of the

equations. The speed up factor can vary strongly depending on the computer sys-

tem used, on the choice of compiler, and of course, on the complexity of the flow to

solve (as it may be difficult to achieve a good load balance).
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Part II

RESULTS OF NUMERICAL

SIMULATIONS
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The code developed and used in this work to solve numerically the equations

(2.56) and (2.61) governing shallow turbulent and rotating coastal oceanic flows, is

written in FORTRAN 90. The reliability of the computation results lays on a con-

tinuous and iterative process of verification and validation of the solutions against

experimental and numerical studies published in the literature. In practice, the code

veracity and validity stand on the accumulation of proofs that it works properly.

Verification assessment determines if the programming and mathematics are

correct by comparing simulation with accurate numerical and experimental results.

Validation assessment determines if the model can represent physical phenomena

comparing simulation with observations and validated models.

In chapter 4, the numerical techniques are verified by comparing the code solu-

tions with several reference authors of computational physics, fluid mechanics and

numerical methods, in classical two-dimensional flow problems. By adding gradual

complexity to the flow, those cases allow to check the correct implementation of the

solvers, to detect programming errors, and to validate the model in simple config-

urations. Then the shallow ocean model is tested against a referenced case where

bathymetry, Coriolis effect, eddy viscosity and seabed friction have a significant

impact on the hydrodynamics. All these simulations are presented to show that the

model and the code are suitable for coastal flow studies.

Finally, in chapter 5, the code is applied to simulate two physical cases:

1. a hypothetical oil spill in the area of Tarragona harbour. This configuration

allows to validate the results with the previous version of SIMOIL by Cuesta

et al. [11] ;

2. a recent oil spill occurred during the 2006 Lebanon war. The hydrodynamic

model is coupled to the upgraded oil slick model SIMOIL to perform hind-

cast simulation of this major Mediterranean oil spill. The system is validated

against observations and reference simulations of the Mediterranean Opera-

tional Ocean Network. The potential flow version of SIMOIL is also run in

order to evaluate the improvement accomplished developing this generalised

shallow water model.

Test-cases and methods are summed up in table 3.1.
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Square Cavity X X X X

Arc Shaped Cavity X X X X

Skewed Cavity X X X X

Backward Facing Step X X X X X X X

Plane Wall Jet X X X X X

Interaction Vortex Steep Slope X X X X X X

Salou X X X X X X X X X

Lebanon War 2006 X X X X X X X X X

Table 3.1: Table of test-cases, methods and model runs used during the verification and validation process.
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Chapter 4

Verification of the Code on

Benchmark Cases

4.1 Enclosed flows : lid-driven cavities

4.1.1 Interest and description of cavity flows studies

The laminar incompressible flow in driven cavities is a very classical and stan-

dard problem to test numerical methods in CFD literature. This study refers to

numerical and experimental works published by Ghia et al. [47], Fuchs et al. [48]

and Erturk et al. [46]. Each article focuses on a different cavity shape and a range

of Reynolds number is evaluated. Every flow field is characterized by streamlines

patterns and velocity profiles along lines passing through the center of the cavities.

The three simple, and easy to program, geometries introduced here and sketched

in figure 4.1, provide an ideal benchmark to evaluate the correct implementation of

the code and to verify the accuracy of the numerical techniques. In each case the top

boundary is moving at a constant pace entraining the fluid by viscosity. As a result,

a main vortex forms in the center of the domain. Secondary counter rotating vortices

may form at the lowest corners, which intensity and position vary in function of the

Reynolds number defined by the velocity of the leading wall. As can be seen in

figure 4.1, for the square cavity problem a natural cartesian grid is used to mesh

the domain. This mesh is regular and orthogonal. For the polar cavity, a boundary

conforming, orthogonal and non-regular grid is used. Finally, for the skewed cavity,

also a boundary-fitted, regular but in this case non-orthogonal grid is tested. These
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A B
A B

C
CD

D

Lid driven cavity Polar cavity Skewed cavity

orthogonal 

regular mesh

orthogonal

non regular mesh

AB  :   moving boundary  driving the flow

BC, CD, DA  :   static boundaries
Flow inside a cavity : boundary conditions

non orthogonal

regular mesh

A B

CD 45”

Figure 4.1: Schematic view of the 3 cavities

different mesh configurations allow us to ensure that the generalised equations, the

geometry coefficients and the wall boundary conditions are correctly resolved and

evaluated by the code.

4.1.2 Numerical results and discussion

4.1.2.1 The square cavity

The objective is to verify the quality of the numerical solution of the code in

cartesian coordinates. This test allows also to verify the consistency of the wall

boundary conditions described previously in 2.2.3.5. Simulations have been re-

alized for Re=100, 1000 and 3200, over 2 different meshes (129x129 nodes and

257x257 nodes), although only the results at Re=3200 for the thinner mesh (257x257)

are presented.

The study is realized on a square cavity of side size equal to 1 meter. Wall

boundary conditions (no flow through and along the wall) are applied at the bound-

aries of the cavity. The top wall (AB in figure 4.1) is in constant motion at velocity 1

ms−1. The kinematic fluid viscosity is choosed such as the Reynolds number based

on the leading velocity and the side size of the cavity is equal to 3200.

Coriolis coefficient 2Ωis set to 0, as well as the seabed friction coefficient

Cbottom
D . The depth dependency is eliminated by setting a uniform and constant

depthh equal to 1. The grid resolution with 257x257 nodes is found to be adequate

to resolve the boundary layer at Re=3200.

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL SIMULATION OF OIL SPILLS IN COASTAL AREAS USING SHALLOW  WATER EQUATIONS IN GENERALISED COORDINATES 
Guillaume Novelli 
T-1797-2011 



4.1. ENCLOSED FLOWS : LID-DRIVEN CAVITIES 65

(a) Ghia Re=3200 Cartesian grid 129x129 [47](b) Present work Re=3200 Cartesian grid 257x257

Figure 4.2: Streamline pattern for vortices in the square cavity at Re=3200

Streamline contours for the cavity flow atRe= 3200 are shown in figure 4.2.

The negative values ofψ, in blue, are taken in the range[−0.1175,−10−4]. They

show how the primary vortex occupies the main part of the cavity. The positive

values ofψ, in red, are taken in the range[10−8,3.10−3]. They show the ubication

of 3 secondary eddies in the lowest corners and near the upper left corner.

Figures 4.3 and 4.4 show the velocity profiles computed by Ghia [47](•) and

by the present code (—) for U(y) (horizontal component of the velocity) along a

vertical line passing through the center of the cavity atx= 0.5, and forV(x) (vertical

component of the velocity) along a horizontal line passing through the center of the

cavity aty = 0.5.

Both solutions agree very well, indicating that the present code solves ade-

quately the square cavity flow, up to Re=3200, on a cartesian mesh fine enough to

resolve the boundary layer. No accuracy is lost in the computation of the Helmholtz

variables, the geometry coefficients or in the approximation of the boundary condi-

tions that would make the solution unstable or wrong.
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Figure 4.3: Comparison ofU(y) velocity along a vertical line through the center of the
cavity at x=0.5
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Figure 4.4: Comparison ofV(x) velocity along a horizontal line through the center of the
cavity at y=0.5
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4.1.2.2 The polar cavity

The objective of this benchmark case is to verify the quality of the numerical

solution of the code in generalised coordinates that are orthogonal but non regular.

This test also checks the consistency of the wall boundary conditions described pre-

viously in 2.2.3.5. Simulations have been realized for Re=60 and 350 over different

meshes (81x81 nodes and 129x129 nodes), although only the results at Re=350 for

the thinner mesh (129x129) are presented.

The study is realized on a cylindrical cavity characterized by an opening angle of

1 radian, a rotating inner radiusR1 = 0.0475mand a fixed outer radiusR2 = 0.095m

like in Fuchs and Tillmark [48] experiments. Wall boundary conditions (no flow

through and along the wall) are applied at the boundaries of the cavity. The top wall

(inner radius AB in figure 4.1) is in motion at constant angular velocityUθ = 1ms−1.

The kinematic fluid viscosity is again choosed such as the Reynolds number based

on the angular velocity and the inner radius of the cavity is equal to 350.

Coriolis coefficient 2Ωis set to 0, as well as the seabed friction coefficient

Cbottom
D . The depth dependency is eliminated by setting a uniform and constant

depthh equal to 1. The grid resolution with 129x129 nodes is found to be adequate

to resolve the boundary layer at Re=350.

Streamline contours for the cavity flow atRe= 350 are shown in figure 4.5(a).

The mesh appears as a grey canvas. The negative values ofψ, in blue, are taken

in the range[−10−6,−10−3]. They show how the primary vortex occupies the

main part of the cavity. The positive values ofψ, in red, are taken in the range

[10−8,3.10−3]. They show the ubication of 2 secondary eddies in the lowest cor-

ners. The experiments by Fuchs and Tillmark provided both qualitative and quanti-

tative results. They visualized the flow field by seeding heavily the fluid with Al2O3

and illuminating laterally the cavity with a laser sheet. Figure 4.5(b) shows a picture

taken of this flow for Re=350. The numerically computed streamlines for Re=350

shown in figure 4.5(a) are in very good agreement with this qualitative information.

Fuchs and Tillmark also measured, by using laser Doppler anemometry, the ve-

locity components at some sections of the cylindrical cavity and compared them

to computed solutions. They found a very good agreement between the results

and attributed small differences to three-dimensional effects in the apparatus. The

present code is verified by comparing these results to the computed angular and ra-
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(a) Present work Re=350 Polar grid 129x129

(b) Experimental visualization of the flow in the polar cavityat Re=350 [48]

Figure 4.5: Streamline pattern for vortices in the polar cavity at Re=350
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Figure 4.6: Velocity profiles in the polar cavity at Re=350
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dial (Uθ(r),Urad(r)) velocity profiles at Re=350 along a radial line passing through

the center of the cavity. All these results are compiled in the figure 4.6, the present

results being very close to both experimental and computational values from the

literature.
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4.1.2.3 The skewed cavity

In this case, the objective is to verify the quality of the numerical solution of

the code in non-orthogonal, but regular, skewed coordinates. This test also checks

the consistency of the wall boundary conditions described previously in 2.2.3.5.

Simulations have been realized for a skew angle of 45o, at Re=100 and 1000, over

a mesh made of 129x129 nodes. Although only results at Re=1000 are presented

here compared to Erturk and Dursun [46] high resolution benchmark which was

computed on a 512x512 nodes mesh.

The study is realized on a 45o skewed cavity of side size equal to 1 meter il-

lustrated previously in figure 4.1. Wall boundary conditions (no flow through and

along the wall) are applied at the boundaries of the cavity. The top wall is in con-

stant motion at velocity 1ms−1. The kinematic fluid viscosity is calculated such as

the Reynolds number based on the leading velocity and the side size of the cavity is

equal to 100 and 1000 respectively.

Coriolis coefficient 2Ωis set to 0, as well as the seabed friction coefficient

Cbottom
D . The depth dependency is eliminated by setting a uniform and constant

depthh equal to 1.

Streamline contours computed in the present study for the 45o skewed cavity

flow atRe= 1000 are shown in figure 4.7(a). The negative values ofψ, in blue, are

taken in the range[−10−3,−10−10]. The positive values ofψ, in red, are taken in

the range[10−10,10−3]. The streamline patterns found by Erturk and Dursun in [46]

for the same flow are given in figure 4.7(b). There is a very good agreement between

both solutions : in this geometry the primary vortex is confined at the upper part of

the cavity. A secundary vortex occupies the main part of the cavity and at least

3 alternating counter-rotating vortices can be identified between the geometrical

center of the cavity and the lower left corner.

In their article [46], Erturk and Dursun solve the skewed cavity flow with a

variety of skew angles ranging between 15o and 165o for Re=100 and Re=1000, on

a very fine generalised grid. They provide for future researchers detailed tabulated

results of velocity profiles along lines passing through the center of the cavity (see

the dot lines in figure 4.7(b)). Figures 4.8 and 4.9 compare velocity profiles obtained

with the present code against the results tabulated in [46] : the agreement is very

good. The reason is probably that both physical model and numerical methods are

very similar, and that the 129x129 nodes mesh resolution is fine enough to resolve
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(a) Present work Re=1000 45o skewed grid 129x129

(b) Erturk Re=1000 45o skewed grid 512x512 [46]

Figure 4.7: Streamline pattern for vortices in the 45o skewed cavity at Re=1000
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the flow adequately at Re=1000.
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In this last section the code has been tested against some of the available bench-

mark problems with cartesian, non-orthogonal and non-regular grids in order to

verify the correct implementation and computation of the geometric coefficients as-

sociated to equations written in generalised coordinates. The comparison with the

literature has been satisfactory.

4.2 Open flows

With the exception of lakes and land-locked seas, numerical simulations of

coastal flows always involve at least one boundary condition limiting to the open

sea. Across such a non-physical and artificial boundary, complex time-dependent

inflow and outflow can occur, which makes it difficult to find a universal method

to treat that open boundary. So in practice, if possible, one chooses the location of

the artificial boundary in such a way that the physics are simplified. Then several

solutions can be implemented, which need to be adapted to each particular case,

knowing that a unique, best boundary condition cannot be determined in advance.

The purpose of this section is to verify and validate the methods and the model

of open boundary conditions described in 2.2.3.5 that are:

• Forced inflow velocity profile

• Outflow boundary condition

• Entrainment boundary condition

To achieve this goal, the solutions of the laminar flow over a backward facing

step and the forced laminar plane wall jet, are computed and compared to numerical

and experimental studies in the literature.

4.2.1 Backward facing step

4.2.1.1 Interest and description

The flow over a backward facing step (BFS) is a standard benchmark prob-

lem in CFD. The most important charateristics are the sudden expansion and the

consequent separation and reattachment of the flow. It has many practical engi-

neering applications, both in internal flow systems like diffusers, combustors and

opening channels, and in external flows like flows around airfoils and buildings.
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Figure 4.10: Schematic view of the flow over a backward-facing step

A large amount of studies can be found on the topic, both experimental and nu-

merical works, for many configurations : from laminar two-dimensional flow, to

turbulent three-dimensional flow, with a wide range expansion ratio, analysed by

many different methods. A complete survey of the previous works can be found

in Le’s dissertation [36] and the more recent Kanna’s note [49]. This study refers

particularly to the works conducted by Kanna [49] and Borthwick [50] with similar

numerical methods, Armaly et al [51] experimental study of the effect of Reynolds

number on the reattachment length as reported in Barton’s study [52] on the influ-

ence of the length of the entrance channel, and also Gartling [53] numerical work

on outflow boundary conditions.

A sketch of the BFS flow can be seen in figure 4.10. It consists of a plane

channel with a step. At the inlet, a steady parabolic flow is set. It encounters a

sudden expansion that causes the flow to separate at the step wall and a recirculation

zone appears behind the opening. In a laminar flow, the reattachement length (X1)

increases continuously with Reynolds number and a secondary vortex (measured by

X2 andX3) may appear at higher Reynolds number at the top wall of the channel.

The objective of this test is to validate the forcing of inlet velocity profile, and

the kind of outflow boundary conditions which allows the flow variables to leave

the computational domain without perturbing the upstream flow.
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4.2.1.2 Results and discussion

The geometry and inlet conditions considered here are the same than Kanna

and Gartling [49, 53]. The outlet condition is the same than Kanna. The channel

width is H = 1, so the step heighth = 0.5. The channel length is 40h= 20. The

Reynolds number is defined asRe=
UavgH

ν . The inlet velocity profile is specified

as a parallel flow with a parabolic horizontal component given byU(y) = 24y(y/2)

for 0≤ y≤ 0.5. This produces a maximum inflow velocityUmax= 1.5 and an aver-

age inflow velocityUavg = 1. After a grid independence study at Re=800 (101x11

nodes,201x21 nodes, 201x41 nodes), a cartesian grid (201x21) is found to be suit-

able for the calculations.oce
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Figure 4.11: Reattachment and separation length with Reynolds number

The simulations are done for Re ranging from 100 to 800. The reattachment

lengthX1 is defined by a change of sign of the vorticity on the bottom wall. The

upper separation location and size are measured byX2 andX3. The variation of the

reattachment length with Re is given in figure 4.11. The present work agrees well

with both the numerical results provided by Kanna and Armaly’s experimental re-

sults rescaled by Barton [51,52]. As expected, the reattachment lengthX1 increases

with Re, but non linearly as the flow is delayed by viscous effects because of the
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Figure 4.12: Horizontal velocity profiles downstream the step at Re=800 at x=3, x=7 and
x=15

upper wall at low Re (Re≤ 400), and even more delayed at higher Re because of

the upper recirculation region. At low Re, the reattachment length predicted by the

computation is higher than the one measured by Armaly. This result is consistent

with Barton’s observations [52] : at low Re, at the channel entrance, the real flow is

influenced by the expansion and the size of the step-side recirculation is significa-

tively smaller than the one computed with a perfect parabolic flow forced over the

step. At high Re, there is also a discrepancy between experimental and numerical

results that was not solved refining the computational mesh. This deviation can be

explained by the three-dimensional experimental effects observed by Armaly for

Re> 400 which makes difficult the comparison with two-dimensional simulations.

In the figure, the variation ofX2 andX3 with Re shows that the upper recircula-

tion bubble grows and moves downstream as Re increases. This observation was

reported previously by Le [36]. Further comparisons are made difficult because of

the absence of tabulated values: numerical results pictured here and produced by

the other authors have been carefuly extracted from the publications.

At Re=800, horizontal velocity profiles are extracted at 3 downstream locations

in X = 3, X = 7 andX = 15. This work results show good agreement when com-
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78 CHAPTER 4. VERIFICATION OF THE CODE ON BENCHMARK CASES

pared with Kanna in figure 4.12. The small differences in the velocity profiles are

due to the difference in the reattachment length, lower for Kanna (X1/h = 12.42 in

this study and Kanna foundX1/h = 11.81) and so the maximum velocity appears

to be higher atX = 3 andX = 7. Further from the separation flows, atX = 15, the

profiles are getting much closer.
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Figure 4.13: Schematic view of the plane wall jet geometry, including the boundary condi-
tions and the velocity profile close to the entrance.

4.2.2 Plane wall jet

4.2.2.1 Interest and description

A wall jet is a thin jet of fluid blown tangentially along a surface. It has impor-

tant applications in heat and mass transfers for the engineering design of evaporation

and cooling technologies, but it also shows a strong similarity with coastal currents

where the flow field can be roughly divided into two areas : the inner near-wall

region, characterised by the velocity profile of a viscous boundary layer over a flat

plate, and the outer free stream region, where after reaching an inflection point, the

velocity profile is similar to a free shear layer. The laminar plane wall jet (PWJ)

configuration and the typical velocity profile close to the entrance are illustrated in

figure 4.13.

How to model the open boundary conditions in the free stream region and at the

outlet is challenging for numerical modellers. Kanna and Das [34] reviewed some

of the latest studies on the PWJ problem and found a suitable combination of en-

trainment and exit boundary conditions which has been implemented in this work.

The objective of this section is to validate the application of these boundary condi-

tions in this code, by comparing velocity profiles at different downstream locations

with the numerical results of Kanna and the experimental results of Quintana et

al. [34,54].
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4.2.2.2 Results and discussion

The numerical experiments are carried out atRe= 300, with a steady parabolic

jet (of width h = 0.05) entering the domain from the lower left corner and blowing

over a horizontal wall. The dimension of the domain are identical with the exper-

iment described by Kanna in [34]: 30 xh in streamwise directionX and 20 xh

normal directionY. The upper boundary is set as entrainment boundary condition

defined in equation (2.2.3.5) and is bounded by a wall at left and an open boundary

at the downstream exit of the domain. The calculations are made over a cartesian

grid made of 181 x 121 nodes to guarantee enough accuracy all over the domain.

Once the steady state is achieved, the streamlines pattern obtained (figure 4.14(b))

are compared qualitatively with the reference solution (figure 4.14(a)) computed by

Kanna in [34]. The two regions of the flow appear clearly. The main flow expands

from the lower left corner until it occupies half of the domain at the downstream

boundary. Entrainment occurs in the upper part of the domain: the ambient fluid is

sucked in inside the domain at the upper boundary and carried away downstream by

the main flow. The present code represents well those features.

For a more quantitative analysis of the data, the boundary layer thicknessδ is

defined as the normal distance where horizontal velocityU is equal to half of the

maximum velocityUm. Then, the similarity variableµ is defined asy/δ. Finally, the

similarity profiles at different downstream locations shown in figure 4.15 allow to

compare the present work with Kanna numerical results and Quintana experimental

measurements [34,54]. A good agreement is noticed with the benchmark results.

In figure 4.15(a), atX = 3h, the similarity profile shows a small negative region.

Further downstream, in figures 4.15(b), 4.15(c), 4.15(d), the jet is expanded and the

negative region disappears. A slight deviation can be observed from the reference

results that could be explained mainly by a difference in the grid resolution.

4.3 Conclusion

A protocol of verification of the code has been established consisting in running

a serie of benchmark simulations.

The first part of this methodology concerns laminar two-dimensional flows and

focuses on the verification of the solver and the boundary conditions of the gener-

alised coordinates vorticity-streamfunction formulation of the Navier-Stokes equa-
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(a) Kanna, clustered grid 81x81 [34]

(b) Present work, cartesian grid 181x121

Figure 4.14: Streamline pattern for the laminar plane wall jet atRe= 300
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tions.

The second part of the protocol concerns the validation of the shallow coastal

ocean model which is the subject of the next section of this chapter. It validates

the ability of the model to reproduce accurately observed and measured oceanic

phenomena involving interaction of currents with bathymetry and varying environ-

mental parameters.

At every stage of the development of the computer code, the process has been

completeded successfully in order to ensure the quality, accuracy and reliability of

the numerical predictions.

Coastal oceanic currents are deeply influenced by changes of bathymetry, plan-

etary rotational effects and seabed friction (cf. chapter 2). Since the numerical

methods and the model of boundary conditions have been verified and validated

for the case of purely two-dimensional flows, it is now possible to carry out the

validation of the model for depth-integrated rotating flows.

A case study by Zavala Sansón and van Heijst [55], presenting qualitative and

quantitative observations and analysis of such flow has been selected in order to

compare with the solution of the present model. This case deals with the interaction

of a vortex with coastal topography. It reveals the basic mechanism involved in

the generation of meandering currents after a cyclonic vortex passes over a western

slope. A phenomenon very similar to the meandering of the Gulf Stream that can

be observed off the south-east coast of the USA. Zavala Sansón and van Heijst

experiments were performed in a rectangular rotating tank with a topographicβ-

plane allowing to reproduce the variation of planetary vorticity with latitude, and the

consequent vortex motion was visualized using colored dye and laser velocimetry

(see figure 4.16). Later, a numerical simulation was done but this time with oceanic

parameters, to show that numerical and experimental results were consistent with

real ocean observations. This last configuration is the one choosed for comparison

of the present code predictions. In order to perform the comparison, a modules for

transport of particles has also been developed.
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84 CHAPTER 4. VERIFICATION OF THE CODE ON BENCHMARK CASES

Figure 4.16: Scheme of the set up of the interaction of a vortex with bathymetry of Zavala-
Sanśon experiment in [55]

4.4 Interaction of a vortex with bathymetry

4.4.1 Interest and description

The aim of this numerical simulation is to demonstrate that the code developed

here can reproduce the phenomena observed by Zavala Sansón and van Heijst both

in the experiment and in the numerical model, described in [55].

To study this flow in the laboratory, Zavala Sansón and van Heijst used a rotat-

ing rectangular tank equiped with a topographicβ-plane. Theβ-plane is simulated

using a uniform weak linear slope at the bottom of the tank, over its length, which

is dynamically equivalent to the variation of the Coriolis parameter in theβ-plane

approximation: finally north and south of the domain corresponds with the shallow

and deep parts of the tank. To simulate a strong western topography, an additional

bottom slope is fixed along the west side of the tank bottom. The tank is filled with

fresh water and set at a constant rotation rate during 30 minutes previous to the ex-

periment to ensure the fluid has reached a state of solid body rotation. The vortices

are produced by syphoning a fixed amount of water through a thin perforated tube

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL SIMULATION OF OIL SPILLS IN COASTAL AREAS USING SHALLOW  WATER EQUATIONS IN GENERALISED COORDINATES 
Guillaume Novelli 
T-1797-2011 
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during a certain period of time. To visualize the flow, fluorescent dye was seeded in

the vortices and then recorded with a corotating camera located above the tank. Fig-

ure 4.17 shows several pictures of the trajectory of a cyclonic vortex over a western

topography in the laboratory experimentent made by Zavala Sansón.

This is a way to reproduce, observe and measure, at a laboratory scale, the dynamic

field induced by the variations with latitude of the Coriolis coefficient (f = f0+βy),

which is called theβ effect. Besides, the dynamics of large scale oceanic flow is

driven by the conservation of potential vorticity (see chapter 2) which is function

of the local Coriolis coefficient and the local depth. So changes in the topography

can induce specific ocean dynamics in the same way the variation of the Coriolis

coefficient does, and this is called ”the topographicβ effect”. The scales of the topo-

graphicβ value and the strong topography in the laboratory experiments have been

chosen so they compare well with real continental slopes, and therefore a similar

flow can be expected during the numerical simulation with oceanic parameters.

The real oceanic parameters used here are the same than the one used by Zavala

Sanśon and van Heijst: a rectangular domain of 1000 km in the direction East-

West (x) and 1500 km in the direction North-South (y), meshed with a cartesian

grid of 261x391 nodes. At the western wall the depth is 3000 m, and it increases

linearly up to 5000m atx = 333 km. The horizontal kinematic eddy viscosity (νh)

is chosen as 100 m2s−1. The Coriolis parameter is given byf0 = 5.7x10−5s−1 and

β = 2x10−11 (m s)−1. Only the case where a cyclonic vortex encounters a steep

western slope will be shown here. The initial vortex parameters are defined by its

maximum vorticityω0=4 x 10−5 s−1, its radiusR= 50km, and the vorticity radial

distribution approximated byω(r) such as:

ω(r) = ω0exp

(−r2

R2

)

(4.1)

Herer is the radial distance to the center of the vortex of coordinates (x0 = 500,y0 =

750km). The bottom friction is not considered in the simulation of Zavala Sansón

and van Heijst.

4.4.2 Results and discussion

The laboratory experiment made by Zavala Sansón and van Heijst shows that

a cylonic vortex moves in the northwest direction on aβ-plane. Then, the western
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Figure 4.17: Zavala Sanśon and van Heijst experiment: Top view photographs showing
the evolution of the vortex–topography interaction. The vortex is visualized with dark dye.
The western coastal slope starts from the vertical line at x = 23 cm. [55] Courtesy of Dr
Zavala-Sanśon

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL SIMULATION OF OIL SPILLS IN COASTAL AREAS USING SHALLOW  WATER EQUATIONS IN GENERALISED COORDINATES 
Guillaume Novelli 
T-1797-2011 



4.4. INTERACTION OF A VORTEX WITH BATHYMETRY 87

coastal slope induces a strongβ effect that deviates the vortex southwestward (fig-

ure 4.17, for t<60s). Moreover, as the vortex moves uphill on the slope, a strong

northeastward current is created, that meanders along the topography (figure 4.17,

for t>60s). As the colored vortex indicates, the meandering current is formed with

fluid from the vortex.

Both numerical simulations, in [55] and in the present work, reproduce very

well these observations as shown in figures 4.18 and 4.19. When passive tracers are

distributed randomly over the initial cyclonic vortex patch, with oceanic parameters,

the mechanisms governing the vortex motion and the northeastward meandering

current look to be well captured by the numerical models: the propagation is driven

mainly by the conservation of potential vorticity. A strong change in depth induces

a strong change in the relative vorticity and the advection of the vortex leads to the

formation of the northeastward current. The meandering of this current is better

explained looking at the vorticity field, as in the experiment only the initial vortex

is visible but not the surrounding dynamic field.

The vorticity plots shown in the figures 4.20 and 4.21 give a better insight of

the interaction of the initial vortex with the bathymetry. As can be seen, there is

an intense vortex activity located over the slope where many cyclonic and anticy-

clonic cells are created. Both simulations show very similar prediction until up to

50 days. The northwestward advection of the initial cyclone is very clear in the first

15 days. Then the topographicβ effect becomes locally stronger than the plane-

tary β effect, and the cyclon heads to the southwest direction before decaying. As

the cyclonic vortex migrates westward, the ambient fluid is entrained by the vor-

tex upon the slope. To conserve the potential vorticity this fluid parcel starts to

flow clockwise, like anticyclones (day 10 to day 25). This anticyclone at his time,

entrains another fluid parcel to turn clockwise up the slope, and as this process is

repeated it creates the northeastward current meandering in between the cyclonic

and anticyclonic structures.

As a conclusion, the conservation of potential vorticity and the topographicβ ef-

fect are the basic mechanisms governing the motion of oceanic meso-scale cyclones

over western coastal topography. This case study proved that the model developed

in this work is capable of predicting real oceanic flow phenomena strongly depen-

dent to changes in depth and in latitude.
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Figure 4.18: Tracer evolution from an oceanic cyclonic vortex-topography interaction as
computed in [55]. Courtesy of Dr Zavala-Sansón
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Figure 4.19: Tracer evolution from an oceanic cyclonic vortex-topography interaction as
computed by the present code
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Figure 4.20: Vorticity contours from an oceanic cyclonic vortex-topography interaction as
computed by [55]. Solid lines are positive contours, dashed lines are negative contours. In-
terval∆ω =4x10−6.s−1 in the range [-8x10−6,12x10−6]s−1. Courtesy of Dr Zavala-Sansón
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Figure 4.21: Vorticity contours from an oceanic cyclonic vortex-topography interaction
as computed by the present code. Red lines are positive contours, blue lines are negative
contours.Interval∆ω =4x10−6.s−1 in the range [-8x10−6,12x10−6]s−1.
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Chapter 5

Numerical Simulations of Oil Spills

Accidents

In this chapter two cases of oil spills are studied with the numerical simulation

tool developed here.

The first one is a hypothetical accidental spill in the area of Tarragona harbour, a

zone of intense traffic of oil carriers. This case was studied before with the previous

version of SIMOIL, so it is possible compare the new numerical results with the

ones of Cuesta et al. [11]

The second case is a real oil spill, consequence of the military conflict between

Lebanon and Israel that occurred during the summer of 2006. This spill is spe-

cially interesting because many satellite pictures and numerical simulations have

been used to monitor the spill during the event. The available data allows to show

the capacity of SIMOIL to predict the spill behavior. The results demonstrate the

improvement of the quality and accuracy of SIMOIL when associated to depth av-

eraged flow predictions instead of a potential flow approximation.

5.1 A hypothetical oil spill off Tarragona harbour

5.1.1 The coastline of Tarragona

The port of Tarragona is located on the western coast of the Mediterranean Sea

at 41o05’N of latitude and 1o14’E of longitude. According to previous studies of the

circulation of the Catalan and Balearic Sea by Font et al. [56], the continental shelf
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Figure 5.1: Marine domain and interpolated bathymetry along the coast of Tarragona.

is narrow in the area of Tarragona, approximately 15 to 25 km. It becomes wider,

around 40 km, from cape Salou until the Ebro delta, and reach 60-80km in the gulf

of Valencia. Figure 5.1 shows the area of computation. The bathymetry was ex-

tracted from the marine chart 486 ”DEL PUERTO DEL FANGAL AL PUERTO DE

TORREDEMBARRA” edited by theInstituto Hidrografico de la Marina. The gen-

eral circulation is dominated by a permanent southwestern current flowing parallel

to the coast until the Ebro delta where the circulation becomes more complex due

to strong interaction between the permanent current and freshwater masses coming

from the river outlet.

The city of Tarragona hosts one of the largest petrochemical industry site of

Spain. According to the Tarragona port authority in the 2010 annual report [57],

almost 33 million of tons of goods were exchanged (loaded or unloaded) through

the port of Tarragona. Among this quantity around 17 million of tons of petroleum

products (including crude oil, petrol, gas-oil, asphalt and other petroleum products)

transited through the port of Tarragona in more than 1000 tankers during the year

2010. Besides that, the area of Salou, located at less than 10 km south of the port

of Tarragona, is the most popular tourist resort of Costa Daurada, famous for its
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Figure 5.2: Detail of the curvilinear mesh around cape Salou.

tourism facilities and sandy beaches. Prevention and response actions has to be

carefully planned in such areas to minimize the consequences of any accidental

spill.

5.1.2 Parameters of the oil spill

In order to prepare for emergency situations, several numerical simulations of

accidental oil spills have been conducted in the past by Cuesta et al. [38,11]. They

considered both instantaneous and continuous massive releases of crude oil in the

vicinity of the port of Tarragona under different wind conditions. The case of a

NE to SW wind of 3.33 m.s−1 is studied here. It is a typical autumn wind along

Tarragona coast, locally known as ”vent gregal”. As a first approximation for Cuesta

et al. simulations [38, 11], the currents were supposed to be uniform following

the potential streamlines parallel to the coast, with an intensity of 0.15 m.s−1, in

agreement with the measurements of Font et al. [56].

An 8 hours continuous release of 150,000 m3 of crude oil of density 870 kg/m3 is

considered. Cuesta et al. simulation accounts for the oil evaporation, unfortunately

these parameters were not published. The oil is supposed to leak from the Repsol
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floating dock (a massive buoy used for unloading vessels outside of the port) located

at 41o04’2,29”N et 1o13’13,82”E.

With the present code, a new velocity field is computed in agreement with the

observations that takes into account the average velocity of 0.15 m.s−1, a maximum

inlet velocity of 0.25 m.s−1, open boundary conditions at south and west sides (top

and right sides of the figure 5.1 representing the domain), a bottom friction coeffi-

cientCbottom
D = 0.0025 (typical value for coastal models [22]), the Coriolis parame-

ter is calculated at every point of the domain according to equation (2.1.2).

The resulting flow is not potential: recirculations, circled in red in figure 5.3, ap-

pear in the lee of several headlands. These recirculations are weak as their current

intensity is of the order of 0.001 m.s−1, while the area in green in figure 5.3 has a

current intensity of 0.15 m.s−1. It can also be noticed that a coastal boundary layer

is created where the intensity of the current significantly drop as it comes close to

the coastline. It is due to the friction with the coast and the sea bottom the first 3 to

5 km off the coast are very shallow seas.

The same 8 hours oil leakage from the Repsol floating dock is studied. In the ab-

sence of data the model was run without evaporation as it does not affect the general

trajectory of the oil.

5.1.3 Comparison of numerical simulations of the accident

The results of the simulation of the evolution of the oil using potential flow

SIMOIL and depth-averaged flow SIMOIL are given in figures 5.4 and 5.5 respec-

tively. 3, 6, 9 and 12 hours after the beginning of the spill.

In figure 5.4, it can be seen that after 12 hours, the isoline representing the limit

of the area where oil thickness is greater than 5mm disappeared. This is due to both

spreading and evaporation of the oil with time.

More importantly, the simulation shows that the slick would elongate driven by the

action of wind and currents in the southwest direction overtaking the cape Salou 6

hours after the beginning of the spill. Then part of the oil slick would accumulate

along cape Salou coastline while the rest would follow the contours of the coast.

In figure 5.5, the simulation shows a similar behavior of the oil slick. The sig-

nificant differences are:

1. As the evaporation was not considered, the slick is thicker than in Cuesta et

al. study. The area where oil thickness is greater than 5mm does remain and
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Figure 5.3: Detail of the sea currents around cape Salou.

extend during the first 12 hours.

2. The oil spill would not reach the coastline at cape Salou or downstream (only

a small quantity of oil would land in the port of Tarragona around the Repsol

dock, that was not represented in Cuesta et al. domain). This is due to the

different hydraulic model used: in Cuesta et al. model, the currents intensity

close to the coast are overvalued compared to the depth averaged currents

model. As a result, with the depth averaged model, the currents have less

influence on the oil spill drift than the wind has. So the oil slick travels less

along the coast and extend more in the southwest direction of the wind.

As a conclusion, this case is an example of the importance of resolving correctly

the coastal currents and evaluating the evaporation loss for oil spill modelling. The

quantity of oil remaining at sea, specially the thickness of the slick, is a critical

information to prepare the response actions like the mechanical recovery of the oil

at sea. This quantity cannot be approximated properly without accounting for the

evaporation of the oil. Coastal currents are boundary layer flows characterised by a

strong gradient of velocity in the direction orthogonal to the coast. For strong winds

(> 6 to 9 m.s−1), the results of both potential and depth averaged flow models will
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Figure 5.4: SIMOIL-Potential flow. Evolution of the oil spill 3h, 6h, 9h, 12h after the
beginning of the 8 hours oil leakage at the floating dock. 3 Isolines of the oil thickness are
plotted: 10−6m, 10−3m, 5.10−3m. Image courtesy of Cuesta et al. [11]
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5.1. A HYPOTHETICAL OIL SPILL OFF TARRAGONA HARBOUR 99

Figure 5.5: SIMOIL-Depth-averaged flow. Evolution of the oil spill 3h, 6h, 9h, 12h after
the beginning of the 8 hours oil leakage at the floating dock. Oil thickness h colors: red for
h > 5.10−3m, yellow for 10−3m < h < 5.10−3m, green for h< 10−3m
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be similar, as the contribution of currents to the trajectory of the slick will be very

weak compared to the wind contribution. For moderate winds, the depth averaged

currents modelling is a better option to predict realistically the transport of oil spill

in coastal areas.

5.2 Massive oil spill on the coast of Lebanon

5.2.1 The coastline of Lebanon

Lebanon is located between latitudes 33o and 35o N and longitudes 35o and

37o E. It is bordered by Syria at North and East, by Israel at South, and by the

Mediterranean Sea at West. The UNEP1 report on the Lebanon war environmental

consequences [58] states that the 225 km of coastline of Lebanon are very urbanized

and densely populated, attracting most of the industrial plants directly on the shore

(such as power plants, chemical companies and refineries). The coastline is made

of sand beaches (20%) and rocky or gravel shorelines.

The bathymetry is characterised by a sharp transition separating a narrow and

shallow continental shelf from the deep Levant basin offshore. The currents system

is dominated by a large scale counterclockwise Mediterranean current that trans-

ports water towards the North up the Lebanese coast. During summer, the seawater

uses to remain at high temperature around 30oC and its salinity is higher than the

western sea, given that the evaporation exceeds the precipitation and rivers run-off.

5.2.2 The oil spill

According to the Green Line association2 oil spill report [59], the 2006 Lebanon

war opposing Israel to Hezbollah started on July 12th 2006. The conflict lasted

34 days until a ceasefire was brokered by the United Nations. On July 13th and

15th of 2006, the Israeli Air Force bombed the storage fuel tanks of Jiyeh power

plant, located on the seashore at 30 kilometers South of Beirut, causing 75,000

tons of heavy fuel oil to burn or leak into the sea during the following weeks. The

exact amount of oil spilled into the sea remains unknown though it has been often

1United Nation Environment Program
2Green Line is a Lebanese non-governmental association promoting environmental awareness

and documenting environmental threat in Lebanon.
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Figure 5.6: Maximum extent of the Lebanon oil spill in dark grey color as monitored by
satellite. Sources to draw the map include [58,59,60]
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Figure 5.7: Comparison of the oil spill in Lebanon with other oil spills accidents. Courtesy
of [58]

estimated that 15,000 tons of oil (see figure 5.7) were released into the sea mainly

during the first week. The remaining 60,000 tons were still burning 2 weeks after

the strikes. The consultant sent by IUCN3 on August 14th found this estimation

reasonable, and noticed that fresh oil was still trapped in cracks and may be leaking

slowly out on the shoreline near Jiyeh fuel tanks farm [59].

The oil contained in the tank was reported to be heavy fuel oil [58] of the type

IFP 6. According to Irwin et al. [61], fuel oil #6 is a residual oil manufactured

from residues from refinery processing. Its composition is complex and variable

depending on the source , refinery design and product requirement. This fuel oil is

known to have few evaporation or dissolution potential, and as such may be highly

persistent. Among the fuel oils, number 6 is the heaviest, with a density slightly

lower than sea water about 920–1000 kg/m3 which may cause it to sink easily. The

viscosity is high, making it to spread slowly, and it weathers also very slowly and

tends to form stable emulsions as tar balls or ”pancakes”.

Green Line observers network reported that the oil that did not burn, or sink,

was caught in the northbound current and transported up the Lebanese coast toward

Syria [59]. The dominant winds, blowing mainly to the northeast during that sum-

mer, prevented the oil from spreading offshore and pushed it against the coastline

and northward. Generally, portions of coast facing west and southwest were more

3International Union for Conservation of Nature
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Figure 5.8: Impact of the oil spill in Byblos bay august 2006. Credits [59]

contaminated than the one facing north, with the exceptions of harbours and bays

where the oil got trapped in. About 150 km of coastline were directly and severely

damaged by the oil spill. Impacted locations included the Marine Protected Area

of Palms Islands near Tripoli, the archaeological sites in Byblos as can be seen in

figure 5.8, and most of the fishing harbours at the north of Jiyeh.

5.2.3 Oil spill simulation setup

5.2.3.1 Objective and interest

This hindcast simulation (prediction made a posteriori) pursues two objectives.

Firstly, the objective is to illustrate how the prediction of the dispersion of the oil

can change if it is driven by a hydraulic model based on the solution of a potential

flow, as in the old version of SIMOIL, or by depth averaged coastal currents, as

in the version developed here. Secondly, it is aimed to validate this new model

by comparing to satellite images, field observations and the numerical model of

reference for the Eastern Mediterranean Sea : MEDSLIK-CYCOFOS.

To achieve this purpose, a mesh is built over the coastal area of Lebanon and

Syria, integrating environmental data such as the bathymetry and sea temperature

and average current direction, to run the hydrodynamic model presented in the chap-

ters 2 and 3. A summary of the running conditions of the three models is given at

the end of this section.
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Figure 5.9: Area of simulation

5.2.3.2 Parameters and hydrodynamics

Area of simulation

The domain defined to carry out the simulations (for both potential and depth aver-

aged flow field) is almost a rectangle of about 220 km x 65 km. It covers the coast

of Lebanon from Alinseniyah (33,43oN ; 35,27oE) to Jebleh (35,34oN ; 35,92oE) in

Syria as shown in figure 5.9. The coastline is extracted from an ASCII file (1257

points) based on the World Vector Shoreline Database provided on-line4 by the

National Geophysical Data Center of the National Oceanic and Atmospheric Ad-

ministration.

Every point on the coastline is located by his latitude and longitude. The lon-

gitude and latitude of reference are taken respectively asλ0 = 35,00N andϕ0 =

34,50E, at the center of the domain. The coordinates of any pointP(X,Y), in a

Cartesian (metric) coordinates system centered in this point of reference, withX

axis positive northward andY axis positive westward, are given by:

X = M(ϕ)
Π

180
∆ϕ (5.1)

Y = N(ϕ)cosϕ
Π

180
∆λ (5.2)

whereλ andϕ are the longitude and latitude of P, and∆λ = λ−λ0 and∆ϕ = ϕ−ϕ0.

4http://www.ngdc.noaa.gov/mgg/coast/
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M(ϕ) andN(ϕ) are respectively the radius of curvature in the meridian (north-south)

and in the prime vertical (east-west) around the point of reference at latitudeϕ0,

which are defined geometrically in the World Geodetic System 1984 (WGS84) of

reference [62] as:

M(ϕ) =
a(1−e2)

(1−e2sin2ϕ)
3
2

(5.3)

N(ϕ) =
a

(1−e2sin2ϕ)
1
2

(5.4)

Wherea = 6378137mis the Earth equatorial radius ande= 0.08181919084 is the

first eccentricity of the WGS84 ellipsoid [62]. Note that Jiyeh power plant latitude

is 33,65030N and its longitude is 35,40827E. A curvilinear grid is then generated,

consisting of 314 points along the shoreline and 92 points in the direction normal to

the coast.

The bathymetric data is available on-line5 from Smith [63] and provides 26499

measurements from satellite altimetry and ship depth soundings in the area of inter-

est. The depth is interpolated on every mesh points using the bi-variate interpolation

algorithm [41, 42]. The topography is then simplified to eliminate strong gradients

of depth that could make the hydrodynamic solution unstable: the maximum depth

is set to 1400 meters and the Palms Island, off the coast of Tripoli, are eliminated

during the smoothing process as can be seen on figure 5.10.

Hydrodynamics

The coastal oceanic current model validated in the previous chapter is used to com-

pute a steady depth averaged sea current velocity field over the domain. It is forced

with a northerly plan flow parallel to the coast at the south face of the domain.

The initial conditions are a potential flow with a velocity of 25 cm/s. With these

conditions, the code is ran until the stationary state is achieved.

As shown in the figure 5.11, the coastal current is directed northward along the

coasts of Lebanon and Syria. Separation flow appears in the lee of several capes,

specially in the bays of Beirut and Tripoli, but also after smaller headlands. The

anticyclonic eddies formed in the gulfs appear stable even for the weak ones.

Offshore and inshore, the flow field computed is consistent with the climatolog-

ical flow regime known for this region and season. Additionally it gives important

information about the currents in the many gulfs of Lebanon coast. For example,

5http://topex.ucsd.edu/cgi-bin/getdata.cgi
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Figure 5.10: Computational mesh and bathymetry of the coast of Lebanon.
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the recirculation that extends through the whole gulf of Tripoli is very weak. There

is no doubt that, in the case of the depth average flow, in this area, the trajectory of

the oil slick will be driven more by the wind than by the sea currents.

The direction and intensity of the wind for the month of July and August were

extracted from the measurements at the meteorology stations of Beirut and Tripoli.

There is an apparent variability between days and nights and some data are missing

(probably due to the war events) in the file provided by MeteoArchive6. That is the

reason why an averaging per period of 12 hours have been done between 10AM and

10PM. When whole days were missing an interpolation of the direction of the wind

was made considering the direction of the smoke plume coming from the Jiyeh

power plant in fire as it appears on satellite pictures, combined with the apparent

drift of the oil slick. An example of the measurements of the daily evolution of the

north-south and east-west component of the wind in Beirut can be seen in figure

5.12.

Oil properties

The density of the oil is set toρo = 930 kg m−3, slightly less than seawater density

ρw = 1030 kg m−3. The momentum transfer coefficient between oil and water is set

to k = 10−2kg m−2 s−1. The temperature of the sea surface appeared to be constant

and uniform at 30oC.

The source is located at 300 meters offshore of Jiyeh power plant, and is mod-

elled as a circular source of 250 meters of radius. It releases 20,000 cubic meters 6

days long (144 hours) starting on July 13th.

The model of evaporation follows the empirical equations established by Fingas

[64] for Bunker C oil which reads :

if t < 24 minutes, then %Ev= (0.35+0.013T)
√

t (5.5)

if t ≥ 24 minutes, then %Ev= (−0.21+0.045T) ln t (5.6)

Where t is the time in minutes and T is the temperature of the oil at sea in Celsius

degrees. Then %Evis the percentage of the volume of oil spilled that has evapo-

rated.

6http://int.meteoarchive.com/overview.html MeteoArchive provides historical weather data
worldwide
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Figure 5.11: Depth averaged currents along the coast of Lebanon. Zoomed in: the recir-
culations in the bays of Beirut and Tripoli. The eddy in the gulf of Beirut shows intense
currents compared to the eddy in the bay of Tripoli where the currents are very weak.
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Figure 5.12: Wind direction and intensity during the first 36 hours of the spill in Beirut and
Tripoli
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5.2.3.3 Summary of the simulation cases

Two models are run and compared to satellite pictures and to the MEDSLIK-

CYCOFOS model that was run in real time during the oil spill event in July 2006.

The three numerical experiments are summarized in the table 5.1.

The first two numerical experiments are run over the 314 x 92 points generalised

mesh described previously. The potential flow case corresponds to the old version

of SIMOIL developed by Cuesta in [11,38]. The depth averaged experiment corre-

sponds to the model of this work. The comparison of both numerical models allows

to see the improvement made between the two versions of SIMOIL.

The third simulation is described in details in [60]. In it, the hydrodynamics is

calculated according to CYCOFOS predictions and the oil dispersion is computed

by the MEDSLIK model for oil transport. It is the operational model of reference

in the Eastern Mediterranean sea, and it is used to validate this work.

The Cyprus Coastal Ocean Forecasting and Observing System (CYCOFOS) is run

to compute the sea currents along the Lebanese and Syrian coast. CYCOFOS has

a horizontal spatial resolution of approximately 1.8 km with 284 x 206 grid points

with a time step of 240 seconds. For the vertical discretization, 25 terrain-following

sigma layers are used. CYCOFOS uses the atmospheric data provided by SKIRON

wind forecasting system at 5 km x 5 km and 1 hour resolution. Initial and bound-

ary conditions come from the ALERMO sub-regional model which is nested within

the Mediterranean Forecasting System MFS. MFS is run with a 6km and 600 sec-

onds time step with an atmospheric resolution actualised every 6 hours (European

Medium Range Weather Forecast). MFS analyses and forecasts are continuously

compared with remote and in-situ observations and assimilating data. Finally CY-

COFOS provides 6-hourly mean forecasts for the next 4.5 days on a daily basis.

In the oil spill model MEDSLIK, the oil spill is represented as thousands of La-

grangian particles. The trajectory of the particles is determined by water currents,

wind and turbulent diffusion processes. The particles are also subject to transfor-

mation processes such as emulsification or evaporation, that eventually modify their

physical properties such as density and viscosity.

5.2.4 Results and discussion

Comparisons between the oil slick extent and position detected by satellite im-

ages (MODIS and ASAR) and predicted by the 3 experiments are presented in the
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Experiment 1 Experiment 2 Experiment 3

Current field Potential flow Stationary depth averaged CYCOFOS 6 hourly forecast
Wind field Meteo Archive Beirut and Tripoli Meteo Archive Beirut and Tripoli SKIRON
Spill position 33o39’1”N 35o24’29”E 33o39’1”N 35o24’29”E 33o40’N 35o24,75’E
Start spill date 13/07/2006 00:00 13/07/2006 00:00 13/07/2006 08:00
Total mass of spill 18,600 tons (20,000 m3) 18,600 tons 18,770 tons
Type of oil Bunker C oilρo = 930 kg m−3 Bunker C oilρo = 930 kg m−3 API=20
Wind correction factor 3% 3% 3%
Current depth Surface Depth averaged 30 m
Spreading SIMOIL SIMOIL 90,000 Lagrangian particles
Evaporation No Empirical equations [64] Boundary layer model of Mackay

Table 5.1: Overview of the model runs for the Lebanon oil spill
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figures 5.13–5.18. The images from the CYCOFOS model, extracted from [60],

show in red the position of the particles representing the oil parcels and in green

oil slick regions digitized from satellite pictures, so as to be more easily compared.

The images from SIMOIL, for both potential and depth averaged flows, show the

position, the extent and also the thickness of the oil slick, giving direct visual infor-

mation about where the most important quantity of oil can be found at sea and on

the coast.

The first available7 satellite picture of the area, in figure 5.13(a), is from16th of

July. The coastline is partially covered by clouds but the smoke plume rising from

the power plant is visible and confirm the southwest direction of the wind.

The depth averaged model coupled to SIMOIL shows, in figure 5.13(b), that the

oil is transported northward until the west of the entrance of the gulf of Beirut, but

without reaching the coast yet. At this moment only the shoreline around Jiyeh is

accumulating oil as the west component of the wind seems to push the oil offshore.

The potential flow model coupled to SIMOIL shows, in figure 5.13(c), a signifi-

cantly different evolution of the oil slick already filling the gulf of Beirut up to the

port of Jounieh at the north of Beirut. In this model, the absence of recirculation

currents in the gulf increases the advection of the oil to the North and prevents the

oil to detach from the coast due to the strengthening of the sea currents parallel to

the coast in comparison with the other model.

In the following 3 days, the main direction of the wind switches to northeast.

On July 19th, the MODIS AQUA image in figure 5.14(a) shows the oil slick as a

strip elongated in the north direction. The oil has clearly reached the coast between

Jiyeh and Beirut, and passing over the headland of Beirut, surrounds the gulf up to

Byblos area. A black smoke plume is still rising from Jiyeh power plant, this time

heading north.

SIMOIL, coupled to depth averaged currents, predicts a pattern of the oil slick ex-

tension very similar to the one in the satellite image until Byblos, as can be seen in

figure 5.14(b). Specially the thickest portion of the slick is in very good agreement

with the most visible oil in the satellite image. Though this model predicts the ex-

tension of the oil slick up to Enfeh latitude. This offshore oil, between Batroun and

Enfeh, does not appear clearly in the satellite picture.

In figure 5.14(c), the SIMOIL version coupled to potential flow currents shows that

7http://www.disasterscharter.org/web/charter/activationdetails?pr p 1415474252assetId=ACT-
126 and http://www.zki.dlr.de/article/865
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(a) (b)

(c)

Figure 5.13: Oil slick extent onJuly 16th: covered by clouds as shown by MODIS AQUA
satellite in figure 5.13(a). Figure 5.13(b) shows the oil slick at the height of the cape of
Beirut as predicted by SIMOIL coupled to the depth averaged currents model. Figure
5.13(c) shows the oil slick filling up the gulf of Beirut as predicted by SIMOIL coupled
to the potential flow currents model.
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the oil continues spreading north and already reaches Syrian coast after having filled

the gulf of Beirut and the gulf of Tripoli and impacted heavily the beaches between

Jiyeh and Beirut first. Every beach facing southwest, from Jounieh to Syria would

be polluted by the oil spill.

The MEDSLIK-CYCOFOS prediction in figure 5.14(d), is somehow in between the

last two predictions about the extension of the slick. The forecast report (not shown

here) says that 80% of the oil has landed, mainly between Jiyeh and Beirut and be-

tween Jounieh and Chekka. This result agrees well with satellite observations and

the depth averaged currents version of SIMOIL. The oil that remains at sea would

be located in the gulf of Tripoli, between Tripoli and Syria, in agreement with the

potential flow version of SIMOIL.

On July 21st, 192 hours after the beginning of the oil spill, an ASAR image of

the oil in the gulf of Beirut is provided in Coppini et al. [60] article. It is reproduced

in figure 5.15(a).

The behaviour of the oil slick in the gulf of Beirut is very well reproduced by

SIMOIL when coupled to depth averaged currents as the oil trapped at the south

of Beirut headland slowly moves northward to land on the beaches from Jounieh to

Enfeh. The model reports in figure 5.16 that about 45% of the volume of the spilt

oil has landed there while around 10% has evaporated, and 45% is still in the sea

off the coast of Tripoli.

The potential flow version of SIMOIL, shown in figure 5.15(c), contrasts with that

description, as in this case most of the oil already left the region between Jiyeh and

Tripoli. Some of the oil remained in the gulf of Tripoli, while the rest has soaked

all the coast of Syria until the north boundary of the domain.

Again, the MEDSLIK-CYCOFOS forecast agrees well with the satellite picture

and SIMOIL coupled to depth averaged currents for the extension of the oil up to

Tripoli. It also predicts landing of oil in the gulf of Tripoli and up to Tartus on the

Syrian coast.

On July 23rd, the satellite picture, in figure 5.17(a), shows a complex pattern of

the extension of the oil slick. Ten days after the beginning of the leakage, the oil

continues travelling northward pushed by the sea currents. A long strip has detached

to the north of Tripoli and some oil appears to be encircling Palm Islands and starts

invading the bay of Tripoli. At the same time, oil that previously landed on the coast

between Jounieh and Chekka, is remobilized by westward winds and enters again

the north current.
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(a) (b)

(c)

(d)

Figure 5.14: Oil slick extent onJuly 19th: as shown by MODIS AQUA satellite in fig-
ure 5.14(a). Figure 5.14(b) shows the oil slick front at the height of Enfeh as predicted
by SIMOIL coupled to the depth averaged currents model. Grey stripes represent the oil
observed by satellite. Figure 5.14(c) shows the oil slick filling up the gulf od Tripoli as
predicted by SIMOIL coupled to the potential flow currents model. Figure 5.14(d) shows
the oil parcels distribution front in front of the gulf of Tripoli as predicted in real time by
MEDSLIK-CYCOFOS model.
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(a) (b)

(c)

(d)

Figure 5.15: Oil slick extent onJuly 21st: inside the gulf of Beirut as shown by ASAT
ENVISAT satellite in figure 5.15(a). Figure 5.15(b) shows similarly the oil slick inside the
gulf of Beirut as predicted by SIMOIL coupled to the depth averaged currents model. Figure
5.15(c) shows that the oil slick has left the gulf of Beirut as predicted by SIMOIL coupled to
the potential flow currents model. Figure 5.15(d) shows the oil parcels distribution predicted
in real time by MEDSLIK-CYCOFOS model.
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Figure 5.16: Evolution of the percentage of volumes of oil evaporated, at sea and accumu-
lated on the beaches, as simulated by SIMOIL coupled to depth averaged currents model
between 13 of July and 06 of August 2006. (Timeline in hours)
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SIMOIL coupled to depth averaged currents, reproduces well those features, as can

be seen in figure 5.17(b), with the exception of the oil entering the gulf of Tripoli.

Even if the extension of the oil slick northward up to Syrian coastal water agrees

with the observations. The sea surface covered by oil is best estimated with this

model than with any of the other ones.

In the version of SIMOIL coupled to the potential flow model in figure 5.17(c), there

is no more oil at sea in the domain as or the oil has landed on most of the Lebanon

and Syria coasts, or it has left the domain through the north boundary. After ten

days the model overestimates strongly the northward extent of the slick.

MEDSLIK-CYCOFOS results appearing in figure 5.17(d), seems to underestimate

the offshore extent of the slick and the quantity of oil remaining at sea. It shows oil

landing north up to the Syrian beaches of Tartus, that can not be confirmed by the

satellite observations due to the presence of clouds.

Syrian authorities reported a first wave of oil reaching their coast on 26th of

July and a second one on 2nd of August. It is not possible to confirm it in MODIS

AQUA image of1st of August because of the clouds covering Syria, as shown in

figure 5.18(a). However, on the Lebanese coast, it can be observed that landed oil is

being remobilized by the wind and transported offshore at every headland located

between Jiyeh and Tripoli.

The SIMOIL version, with depth averaged currents, in figure 5.18(b), cannot sim-

ulate the remobilization of beached oil, but confirms the north and west extension

of the oil slick. Not shown in this figure, SIMOIL did forecast the arrival of oil

in Tartus between 24 and 25 of July. The image also shows that the oil is broken

into two very thin slicks. The smaller one, around 10−6 m thin, is transported west-

ward by the winds and currents of the area. The main oil slick is now leaving the

coast between Batroun and Tripoli, and pushed northward and westward, offshore

the coast of Syria. The slick is very thin now. Its maximum height being around

10−5m makes it difficult to be detected by eye or satellite observation. According

to SIMOIL report (see figure 5.16), around 55% of the oil has landed, 30% remains

at sea and 12% has evaporated (the error in percentage of volume is due to the eval-

uation of the surface covered by oil).

The MEDSLIK-CYCOFOS forecast shown in figure 5.18(c) corresponds to 2nd of

August. It is not very different than the picture of 10 days before. This is probably

due to the fact that, according to MEDSLIK, almost all the oil (80%) landed in the

first 200 hours following the bombing, 20% evaporated and then, less than 1% re-
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(a) (b)

(c)

(d)

Figure 5.17: Oil slick extent onJuly 23rd: as shown by MODIS AQUA satellite in figure
5.17(a). Figure 5.17(b) shows that the oil slick (in purple) is very close to the coast between
Byblos and Tripoli, and in the gulf of Tripoli, as predicted by SIMOIL coupled to the depth
averaged currents model. The observed oil is painted in grey stripes. Figure 5.17(c) shows
the oil slick has left the domain as predicted by SIMOIL coupled to the potential flow
currents model. Figure 5.17(d) shows the oil parcels distribution reaching the Syrian coast
as predicted in real time by MEDSLIK-CYCOFOS model.

UNIVERSITAT ROVIRA I VIRGILI 
NUMERICAL SIMULATION OF OIL SPILLS IN COASTAL AREAS USING SHALLOW  WATER EQUATIONS IN GENERALISED COORDINATES 
Guillaume Novelli 
T-1797-2011 



120CHAPTER 5. NUMERICAL SIMULATIONS OF OIL SPILLS ACCIDENTS

mained at sea. In agreement with the observations, the oil reached Tartus on 2nd of

August, but the extension of the slick offshore is underestimated by this model all

along the coast.

It is possible to compare the assessment map published by the Greenline Asso-

ciation [59], drawn after on the ground observations made before 10th of August.

This map is shown in figure 5.19(a). The next picture, in figure 5.19(b), shows the

computational domain, with in the vertical dimension, the quantity of oil accumu-

lated on the coast until 2nd of August, as predicted by SIMOIL coupled to the depth

averaged currents. This result is in very good agreement with the observations re-

ported in figure 5.19(a): the biggest quantity of oil is found on he beach close to

Jiyeh and on the south coast of Beirut headland. The next area presenting more oil

on the coast would be located between Jounieh and Jbeil and in Batroun. Finally

oil has landed also in the bay of Chekka, along the headland of Enfeh and on the

shore of Tripoli. As seen before, the portion of coast situated in the gulf of Tripoli

from El Abdeh to the Syrian border does not appear oiled in the simulation. This is

probably due to the to the low resolution of wind data and to the simplification of

the bathymetry in this area (forced by the presence of the Palm Islands).

Some partial conclusions can be drawn from these simulations:

• The potential flow model, coupled to SIMOIL, gives a good approximation

of the trajectory of the oil slick for short term forecasts (less than 1 week).

This feature is specially interesting in the cases that there is no information

about bathymetry. For long term forecasts and/or complex coastlines, where

the recirculation currents inside the bays are intense (in comparison to the

wind intensity), then this model fails to predict correctly the landing of the

oil. The depth averaged currents model developed in this work resolves this

issue and constitutes the major improvement added to SIMOIL.

• Coupled to the depth averaged currents model, SIMOIL provides very ac-

curate information about the extension of the slick, both along the coast

and offshore, and about the oil deposition on the coast. It has proved to

be in very good agreement with the observational data collected during the

Lebanon oil spill. Compared to the reference high resolution simulation sys-

tem MEDSLIK-CYCOFOS, it appears that the Eulerian modelling of the oil

slick gives a description of the horizontal dispersion of the oil better than

the turbulent diffusion of Lagrangian particles. This is probably due to the
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(a) (b)

(c)

Figure 5.18: Oil slick extent onAugust 1st: as shown by MODIS AQUA satellite in figure
5.18(a). Figure 5.18(b) shows the oil slick (in colors) as predicted by SIMOIL coupled to the
depth averaged currents model compared to the satellite observations in grey stripes. Figure
5.18(c) shows the oil parcels distribution predicted in real time by MEDSLIK-CYCOFOS
model.
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(a)

(b)

Figure 5.19: 5.19(a)Greenline Assessment Map 10 of august. 5.19(b) 3-dimensional visu-
alisation of the accumulation of oil on the coastline of Lebanon predicted by SIMOIL. The
biggest quantity is found between Jiyeh and Beirut, but significant quantity is also found
between Jounieh and Batroun, the bay of Chekka and the headlands of Enfeh and Tripoli
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difficulty to estimate proper turbulent diffusion coefficients, but also to that

the physic of the oil slick spreading at the sea surface under gravity-viscosity

regime is much better represented by the Eulerian slick thickness model of

SIMOIL, than by the dispersion of a bunch of oil parcels released randomly

at sea.

• The low quality prediction of oil deposition in the bay of Tripoli, suggests that

a high spatial and temporal resolution of environmental data is critical close

to the coast, specially concerning the bathymetry and the wind vector data.

This is necessary to solve correctly the currents flow field and the oil slick

movement. This can be achieved nesting a local boundary fitted coordinates

model within regional and mesoscale atmospheric and oceanic models. It also

has to be noticed that this depth averaged model does not resolve the Ekman

transport and so, the coastal upwelling which can be a major component of

coastal circulation under certain circumstances.

• The additional information of the thickness of the oil slick given by SIMOIL,

could be useful for remote oil spill detection missions (by satellite or plane).

It allows also to estimate better the volume of oil at sea and on the shore to

take decision about the right response actions to implement.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, a computational tool for the simulation of accidental oil spills has

been developed. Basically this numerical tool is made of two parts. The first part

consists of a hydrodynamic model based on shallow water equations that resolves

the depth averaged coastal currents. The second part solves the transport and evap-

oration of the oil slick with greater accuracy than the previous version of SIMOIL.

Those models are written in generalised coordinates so are able to run easily in

naturally complex coastal topographies.

The model integrates vertically the ocean primitive equations under the rigid-

lid approximation. Consequently, a system of equations is obtained describing a

shallow and rotating layer of fluid where Coriolis force and seabed friction can be

important. The shallow water model with the rigid-lid approximation is formulated

in function of the vorticity and stream function variables in order to reduce the

number of equations to be solved.

The equations for the depth averaged currents are discretized, spatially and tem-

porally, using finite differences of second order of accuracy. The implemented

boundary conditions are suitable for the study of coastal flow. They were specially

designed to deal with complex shoreline geometry and possibly complex inflow and

outflow at the open boundaries of coastal domains.

The accuracy of the numerical schemes relative to the oil model is upgraded

from second order to fourth order in time, and from first order to second order in

space. Boundary conditions for accumulation are used on the coast and convective
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conditions are set up at the outlet. One of the major improvement concerns the evap-

oration model. In recent studies [14,12,64], Fingas demonstrated that the model of

Mackay, based on the hypothesis of boundary layer regulated evaporation of the

oil, although it is used by most of the current oil models, is not totally adequate to

oil-at-sea evaporation process. Equations derived from widely available measure-

ments of crude oil distillation properties are now employed, enabling simpler and

appropriate calculations of the evaporation rate for all kind of oils.

During the development of the computer code, several modules were added to

the code to enhance his performance and versatility:

• To face the requirements of high resolution calculations, parallelisation tech-

niques are used that allow to run the numerical simulations either on shared

memory computers or on classical sequential architecture. The parallelisation

was implemented using Open MP commands embedded into the code.

• Sparse environmental data can be assimilated easily thanks to a bi-variate in-

terpolation routine integrated into the code.

• The study of the dispersion of objects different than oil slick is made possi-

ble thanks to a particle tracking technique initially made for passive tracers

diffusion studies but easily adaptable to other cases.

Initially, the model and the code for hydrodynamics were verified against many

test-cases well documented in the literature, paying special attention to mesh defor-

mation and open boundary conditions. Then, the code was successfully tested and

validated in oceanic conditions against experimental and numerical data.

Finally, the complete system of prediction, coupling the depth averaged currents

forecasts and the oil transport model, has been successfully run for two cases of oil

spill accidents. The first study can be used to plan response actions in the port of

Tarragona in case of a massive oil leakage at the Repsol floating dock. The sim-

ulation is compared to the previous version of SIMOIL which advection currents

where based on a potential flow approximation. The results show the importance of

the evaporation process and that the proper resolution of coastal currents is critical

for an accurate prediction of the oil slick movement close to the shoreline. In the

second case study, the code predictions are compared to other numerical simula-

tions and observations collected during a real oil spill accident: the 2006 Lebanon
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oil spill. Not only the quality of the prediction was validated by observations, but

the results shown an expected improvement in accuracy over the precedent version

of SIMOIL based on potential flow advection of the oil slick. Additionally, the re-

sults shown to be in very good agreement with the Mediterranean operational ocean

network simulations of reference.

This original engineering work, by integrating multidisciplinary techniques, shown

its validity and reached its objective to simulate numerically oil spills fate and trajec-

tory. It is a fundamental improvement of SIMOIL and can be considered a suitable

and valuable assessment tool for contingency planning of oil spill in coastal areas.

6.2 Future work

This work was carried out to improve the time and space evolution of oil spills.

It would be useful to go further and extend the range of application of the code for

example to study the fate of the oil droplets dispersed in the water column, or to

determine the drift of any object lost at sea such as persons, containers or ships.

The numerical model presented here is a good tool in that direction. Some

important tracks are given here for further possible improvements:

• First, automatize the generation of the boundary-fitted mesh. Currently, it is

the step of the simulation that is more time consuming as data from different

sources and formats have to be combined (node locations, bathymetry, bottom

friction coefficient, Coriolis coefficient) and sometimes, for complex regions,

assembled one node at a time.

• Second, add a data-assimilation system capable of collecting in real time in-

situ data, and integrating numerical data from coarser regional and meso-scale

oceanic and atmospheric models. The more information in the system, the

more accurate will be the simulation. It should allow to update the forecasts

continuously, adapting the simulation to any change occurring in the field

during the calculations.

• Third, adapt the code to distributed memory computers, typically to large

computer clusters. The Open MP parallel programming already implemented

has advantages in terms of simplicity of programming but lacks the flexibility

and scalability of message passing interface (MPI) framework. More com-

putational resources will be needed to assimilate more environmental data
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and actualise the predictions, so the introduction of MPI programming could

tackle these issues.

• Fourth, develop a three dimensional oceanic flow model to resolve the heat

and mass transfer in the vertical direction. It could be associated to a three

dimensional model for the transport of oil parcels. This would allow to study

the oil dispersion in areas such as iced sea, upwelling zones, river estuaries or

deep seas (like in the case of the Prestige oil spill). Planning response actions

to sub-sea extraction well blowouts, such as the Deepwater Horizon oil spill,

is necessary and need to be developed more [7,65,66]. Numerical simulation

is a safe and inexpensive way to prepare properly for such situations.

Improving the code by implementing gradually such modules would allow to broaden

its capacity and adaptability, to integrate the prediction system within operational

forecast networks and to get prepared for future challenges in the prediction of the

transport of pollution.
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