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anàlisis realitzats per l’esmentat doctorand.
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Abstract

The main goal of this work is to study the turbulent heat transfer in a developed

channel flow using Direct Numerical Simulations (DNS). These simulations solve

explicitly all the scales present in the turbulent flow so, even for moderate Reynolds

numbers, the discretization grids need to be fine enough to capture the smallest

structures of the flow and, consequently, DNS demands large computational re-

sources. The flow, driven by a mean constant pressure gradient in the streamwise

direction, is confined between two smooth, parallel and infinite walls separated a

distance 2δ.

The turbulent heat transport is studied for three differentflow configurations.

Some of them are used as benchmark results for this work. The three cases reported

can be summarized as:

• case A: Scalar plume from a line source in a horizontal channel.

• case B: Mixed convection with the gravity vector aligned with the streamwise

direction (vertical channel).

• case C: Buoyant plume from a line source in a horizontal channel.

In addition, preliminary results for a turbulent reacting flow in a fully developed

channel are also presented in section 7.

In the case B heat flux results from a temperature difference between the channel

walls. The gravity vector is aligned with the streamwise direction and the Grashof,

Reynolds and Prandtl numbers areGr = 9.6·106, Reτ = 150 andPr = 0.71 respec-

tively. Close to thehot wall, buoyancy acts aligned to the flow direction imposed

by the mean pressure gradient so velocities are generally increased in comparison

with a purely forced convection flow. Oppositely, near thecold wall, buoyancy is

opposed to the flow and consequently velocities are decreased.
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Cases A and C are similar because in both cases ahot fluid is released within a

cold background flow through a line source vertically centered inthe wall-normal

direction located at the inlet. The height of the source is 0.054δ. The injectedhot

fluid disperses forming a hot plume that is convected downstream between the two

adiabatic walls of the channel.

The difference between cases A and C lies in the fact that for case A heat and

momentum are decoupled and temperature acts as an scalar. Advection and diffu-

sion are the only phenomena responsible for the evolution ofthe plume. On the

other hand, in case C, buoyancy couples heat and momentum and, consequently,

the plume floats drifting upward as it advances in the channeldue to its lower den-

sity. In case C, the streamwise direction is not homogenous because of the coupling

between heat and momentum. To guarantee developed conditions at the inlet of the

channel it has been necessary to attach a buffer domain just before the computa-

tional domain. In this buffer domain, the momentum transport equations for a fully

developed channel are solved with the same resolution used in the main domain.

The results of cases A and B have been used to validate the 3DINAMICS CFD

code by comparison with data reported in the literature. This code is written in

FORTRAN 90 and parallelized using the Message Passing Interface (MPI-CH li-

brary). It uses the second order in time Crank-Nicholson scheme to integrate nu-

merically the transport equations which are discretized spatially using the centered

second-order finite volume approach.

The analysis of averaged turbulent quantities and the contributions of the differ-

ent terms of the time-averaged transport equations is used to show how buoyancy

affects the turbulent transport of momentum and heat along the channel.

Finally, following a similar configuration than that of caseA, a chemical reac-

tant A released through line source reacts with a backgroundreactant B following

a second order chemical reaction with Damkhöler number of 1. Preliminary results

for turbulent species transport are also included in this work.

Special attention have been devoted to the discretization of the advective terms

to avoid non-realistic values of the variables because of the non-linearities of the

transport equations. The conservative non-reflecting boundary conditions have been

implemented at the outlet to simulate the convected outflow when the streamwise

direction can not be considered homogeneous, as in case C. For homogeneous di-
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rections, periodic boundary conditions have been used.

Large grid resolutions (up to 8 million grid nodes for case C including the buffer

region) demand important computational resources. A parallel Multigrid solver has

substituted the previous conjugate gradient method to solve the Poisson equation in

the pressure calculation. This step was the most expensive in terms of CPU costs.

The Multigrid method efficiency has been compared with two different versions of

the conjugate gradient approach and it has been demonstrated that this method is the

most efficient in terms of CPU time although the current algorithm can be improved

to enhance the scalability in multiprocessor computers.
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conjunta dels Drs. Jordi Pallarès i Ildefonso Cuesta.

Desitjo fer palès el meu immens agraı̈ment a tots dos per haver acceptat la di-

recció d’aquest treball. La seva dedicació en la direcci´o, el constant suport i els seus

coneixements i paciència han estat determinants per a dur abon port aquesta tesi

doctoral.

Voldria fer extensiva la meva gratitud vers tots els altres membres de l’equip do-
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Chapter 1

Introduction

Turbulence is a phenomenon that occurs commonly in nature and its model-

ing is one of the key issues in Computational Fluid Dynamics (CFD). Compared

with molecular diffusion, turbulence improves dramatically the transport of mo-

mentum, heat and species. A turbulent flow is generally threedimensional and time

dependent and its complete description requires an enormous amount of informa-

tion although in most practical situations only it is neededto know the mean flow

properties.

Numerical simulations of turbulent flows may be accomplished using different

levels of approximations yielding more or less detailed description of the state of the

flow. One of the simplest methods is to use semi-empirical correlations. More so-

phisticated methods involve the numerical integration of the time averaged transport

equations, the well-known Reynolds averaged Navier-Stokes equations (RANS) ap-

proach. The Reynolds stress terms,u′iu
′
j , appear in the RANS equations as a con-

sequence of the turbulent fluctuations. Theses terms need tobe modeled to close

the system of equations. The principal drawback of this approach is that the model

represents themeanturbulence using averaged scales. While the small scales ofthe

turbulent flows tend to be universal and flow-independent, the large scales are very

strongly affected by the boundary conditions. Thus, there is no universal RANS

model to solve accurately different turbulent flows.

The Direct numerical simulation (DNS) of turbulence is the most straightfor-

ward approach to the solution of turbulent flows. These simulations solve explicitly

all the scales of the flow so numerical grids have to be fine enough to capture all

the structures including the smallest where the energy taken from the mean flow is
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dissipated by the viscosity. Also, the time step for the timeintegration has to be

small enough to resolve properly the minimum time scale of the flow. If the mesh is

fine enough to resolve even the smallest scales of motion and the numerical scheme

is designed to minimize the numerical dispersion and dissipative errors, then an ac-

curate three-dimensional, time-dependent solution of thegoverning equations com-

pletely free of modeling assumptions can be obtained. DNS allows to compute any

quantity of interest including those that are difficult or even impossible to measure

in experiments. The main limitation for the DNS approach is that the number of

grid pointsN required is proportional toN ∼ Re9/4 so the increase of the Reynolds

number by a factor of two implies an increase of the computational effort by at least

a factor of eight. An alternative to overcome this limitation is the Large-Eddy Sim-

ulation (LES) technique which can be considered to be between DNS and RANS.

In a LES the contribution of the large energy-carrying structures to momentum and

energy transfer is computed directly in the computational grid while the effect of the

smallest scale of turbulence is modeled. This allows to use coarser grids reducing

the computational requirements.

The code 3DINAMICS [1] has been used to solve numerically thetransport

equations for an incompressible fluid using the finite-volume approach over a stag-

gered grid. All terms are discretized using second-order central differencing. The

second-order Crank-Nicolson is used for time-discretization and a fractional step

with multigrid as a Poisson solver is used for pressure calculation. For some of the

simulations performed in this work it was necessary to develop accurate and robust

discretization scheme to deal with the large gradient regions where non-physical

results may be obtained due to the non-linearity of the advective terms.

Multigrid techniques have replaced the previous conjugategradient methods

for solving the pressure calculation. This step is the most costly in terms of CPU

time. The multigrid approach has demonstrated to be faster in solving Poisson-

like systems of equations compared with other methods. A parallel Full-Multigrid

subroutine for different type of boundary conditions has been implemented in the

3DINAMICS code to speed-up this step and to improve the overall computational

performance. The code is written in FORTRAN 90 with Message Passing Interface

(MPI-CH) libraries. The cluster of the ECoMMFiT research group that consists in

24 bi-processor AMD Opteron nodes has been used to perform the simulations.
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1.1 Background

Dispersion and mixing in turbulent flows is important to a variety of scientific

and engineering phenomena including heat transport, chemical reaction and com-

bustion, meteorology, oceanic sciences and environmentalpollutant dispersion. A

thorough understanding of scalar mixing in a turbulent flow is required. Reviews

on the subject have been compiled by Sreenivasan [2], Shraiman and Siggia [3] and

Warhaft [4].

The simulation of the dispersion from concentrated sourcesis an interesting

topic because it may allow to predict, for example, the dispersion of a contaminant

released from a smokestack in the atmospheric boundary layer.

The first works carried out by Taylor [5,6], Uberoi and Corrsin [7] and Townsend

[8] dealt with scalar dispersion in turbulent homogeneous and isotropic turbulence.

After that, the problem became more complex when non-isotropy was included.

Scalar transport in a developed channel is an example of suchtype of flows. Diffi-

culties are increased even more when flow inhomogeneities are taken into account.

The contaminant is released into a turbulent background at ascale usually much

smaller than the integral scale of the velocity field. The released scalar is dispersed

forming a plume that grows as it is convected downstream. Thefirst studies on

scalar dispersion in homogeneous and isotropic turbulencecarried out by Taylor

[5, 6], Uberoi and Corrsin [7] and Townsend [8] showed that the time-averaged

temperature profiles were Gaussian and that the developmentof the plume can be

divided into three stages: the molecular diffusive range, the turbulent convective

range and the turbulent diffusive range. Although the mean temperature profiles are

Gaussian, the r.m.s. profiles of the temperature turbulent fluctuation are not as it

was demonstrated by Wrahaft [9] and Stapountzis et al. [10].

Sawford and Hunt [11] developed a Lagrangian stochastic model and their re-

sults were compared with the experimental data of Stapountzis [10] demonstrating

that molecular diffusion and viscosity affect the development of the thermal plume

(particularly the intensity of the temperature fluctuations) in all stages. This flow

was also studied numerically by Anand and Pope [12] using Probability Density

Functions (PDF) methods and Livescu et al. [13] used DNS to study the dispersion

from line sources in homogeneous isotropic turbulence.

The analysis of the dispersion of a line source placed in an homogeneous turbu-

lent shear flow would help to study the effect of this anisotropy on the scalar disper-
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sion. Experimental works were carried out by Stapountzis and Britter [14], Karnik

and Tavoularis [15] and Chunk and Kyong [16] providing mean and r.m.s. results

and detailed information about the velocity-temperature correlations, the tempera-

ture PDFs and the joint velocity-temperature PDFs. Numerical results for similar

experiments were carried out by Wilson et al. [17] and Cho andChung [18].

Dispersion form line sources in boundary layers has been considered by Shlien

and Corrsin [19]. These authors found that normalized mean temperature pro-

file downstream the source approached an asymptotic form when normalized ad-

equately. Paranthoën [20] deduced a rescaling scheme based on the temporal La-

grangian scale of the vertical velocity fluctuations collapsing the mean tempera-

ture profiles in a simple curve although temperature fluctuations did not scale well.

Fackrell and Robins [21] measured variance, intermittency, peak concentration val-

ues, PDF and spectra of scalar concentration for ground and elevated locations

in a turbulent boundary layers studying also the balance of terms in the variance

and turbulent flux transport equations. Additional experimental work in disper-

sion in turbulent boundary layers were undertaken by Legg etal. [22] Veeravalli

and Warhaft [23], Bara et al. [24], Tong and Warhaft [25] and Vincont et al. [26].

Scalar transport in low-Reynolds-number channel was simulated by Lyons and Han-

ratty [27], Papavassiliou and Hanratty [28] and Na and Hanratty [29]. Kontomaris

and Hanratty [30] studied the effects of molecular diffusivity on a point source lo-

cated at the centerline of a turbulent channel flow. Direct numerical simulations

of dispersion from point sources in fully developed pipe have been performed by

Brethouwer et al. [31]. Single and double line sources in fully developed flow

were studied by Vrieling and Nieuwstadt [32]. Flows at higher Reynolds num-

bers and high aspect-ratio channels were studied experimentally by Lavertu and

Mydlarski [33]. In other works, the passive scalar was released and absorbed at

walls [34] or the scalar fluxes were imposed at the walls [27] providing additional

information about the turbulence statistics of temperature. DNS in combination

with Lagrangian methods has been used to study heat transport from sources at

walls [35], [36]. Experiments of dispersion from line sources for conserved and

reactive scalars have been carried out in homogeneous turbulence [37], [9], [10].

Other authors performed numerical simulations for released non-conserved passive

scalars through line sources obtaining information about the influence of the mixing

process on the chemical reaction rates [32], [38].

Other inhomogeneous turbulent flows have been studied by Bernard and Rovel-
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stad [39], Wang and Komori [40] and Iliopoulos and Hanratty [41].

1.2 Objectives

The main objective in this work is to study the heat turbulenttransport in a

channel flow. The basic channel flow configuration consists ina flow driven by a

mean pressure gradient between two parallel, smooth and infinite walls. Far from

any entrance region, the flow becomes fully developed. Undersuch condition the

streamwise and spanwise directions can be considered as homogeneous so periodic

boundary conditions can be implemented in both directions.

The fully developed channel flow results obtained with the CFD code 3DINAM-

ICS including mean and r.m.s. profiles and mean momentum equation balance have

been validated by comparison with data available in literature and it constitutes the

basic configuration for the different cases where turbulentheat transfer have been

studied.

The first case studied involving turbulent heat transport corresponds to the trans-

port of an scalar released from a source line located in the center of the channel

forming a plume. Advection and diffusion are the only phenomena responsible

for the dispersion from the concentrated source. In the nearregion, where inho-

mogeneities derived from the wall effect are not important,the mean profiles of

temperature in the wall-normal direction are Gaussian-shaped. Once the plume ap-

proaches walls the Gaussian shape is lost. The larger the Reynolds number is the

smaller plume width is obtained. Results are compared with avaliable data in liter-

ature of experimental and computational works.

The buoyancy forces appear when there are temperature differences within the

fluid producing density variations. The buoyancy term is included in the momentum

transport equation so velocity and temperature become coupled. Mixed convec-

tion in vertical channel simulations were performed to study the effect of buoyancy

forces acting along the streamwise direction imposed by a mean pressure gradient.

The goal of this simulation is to validate the code for the cases where forced con-

vection induced by the mean pressure gradient acts simultaneously with buoyancy.

The comparison of results obtained with the centered and theQUICK schemes for

the discretization of the advective terms shows the effect of the numerical diffusion

on the flow introduced by the upstream approach.
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If the source line releaseshot fluid within a cold background in a horizontal

channel, the buoyancy forces drift the plume towards the topwall of the channel.

The effect of the buoyancy on the heat transport is studied comparing the results ob-

tained for the buoyant plume with those for the scalar (or neutrally buoyant) case.

Symmetry obtained in the neutrally buoyant flow for mean quantities with respect to

the channel midplane is lost when buoyancy aligned with the wall-normal direction

is included.

The comparison in terms of computational efficiency betweendifferent solvers

for Poisson equations is also another objective in this work. Such type of equations

appear in the pressure calculation and usually represent one the most time consum-

ing steps in the algorithm. Reducing this step by using a parallel multigrid solver

allows to reduce significantly the total CPU time costs. Multigrid and two versions

of the conjugate gradient methods are used to solve two synthetic cases with analyt-

ical solution and the coupling between pressure and velocity for a fully developed

channel. The results in terms of CPU time and scalability areshown for different

type of discretization grids and different boundary conditions.

Finally, some simulations are performed for a turbulent reactive flow where a

reactant is released through the line source within a background containing another

diluted reactant. The product is formed when these two species react following a

second order chemical reaction. The Damkhöler number has been set to 1 and the

reaction takes place under isothermal conditions.

1.3 Transport equations

The equations governing the conservation of mass, momentum, energy and

species concentration in a Newtonian fluid flow can be writtenas1 :

∂ρ
∂t

+
∂

∂xi
(ρui) = 0 (1.1)

∂
∂t

(ρui)+
∂

∂x j

(
ρuiu j

)
= − ∂p

∂xi
+

∂
∂x j

[

µ

(

2Si j −
2
3

δi j Skk

)]

+SM (1.2)

1All equations are written in Cartesian tensor notation

6

UNIVERSITAT ROVIRA I VIRGILI
DIRECT NUMERICAL SIMULATION OF TURBULENT DISPERSION OF BUOYANT PLUMES IN A PRESSURE-DRIVEN CHANNEL FLOW.
Alexandre Fabregat Tomàs
ISBN: 978-84-690-7781-8 / DL: T.1236-2007



∂(ρh)

∂t
+

∂
∂x j

(
ρu jh

)
=

∂
∂x j

[

κ
(

∂T
∂x j

)]

+ξ+
∂
(
u j p
)

∂x j
+SH (1.3)

∂(ρYα)

∂t
+

∂
∂x j

(
ρYαu j

)
= − ∂

∂x j
Jα j +Sα (1.4)

wherexi are the space coordinates,ui is the vector velocity,p is the pressure,T

is the temperature,h is the enthalpy,ρ is the density,ν is the kinematic viscosity,µ

is the dynamic viscosity andκ is the thermal conductivity.

The termSi j in the momentum transport equation is defined as:

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)

(1.5)

SM represents a source term in the momentum transport equations and can in-

clude effects like gravity, Coriolis forces or buoyancy. Inan analogous way,SH is

the source term for the energy transport equation and may take into account the heat

released or absorbed during a chemical reaction. Finally, chemical reactions can be

taken into account through the termSα which can be interpreted as a source term in

the mass transport equations.

The Kronecker deltaδi j is defined as equal to 1 ifi = j and 0 otherwise.ξ is

the dissipation function defined asτi j ∂ui/∂x j which is usually omitted. For perfect

gases the enthalpy can be expressed ash = CpT whereCp is the heat capacity.

The mass fraction of speciesα is defined as the ratio between the density of

that species and the density of the mixture (constant for incompressible fluids)Yα =

ρα/ρ, Sα is the rate of creation of speciesα andJα j is the molecular flux of species

α in x j -direction. In many applications one can assume that reactive species are

dissolved in an inert carrier fluid. Furthermore, it is assumed that the mass fractions

of the reactive species are small, i.e. dilute mixture is considered. In that case the

mass molecular flux may be modeled with Fick’s law which reads:

Jα j = −ρDα
∂Yα
∂x j

(1.6)

whereDα is the binary diffusion coefficient between speciesα and the car-

rier fluid. These parameters have been assumed constant for all the chemical com-

pounds. Component densityρα can be replaced byCα to denote the concentration
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of speciesα. The concentrationCα can either be regarded as an amount of mass

per unit volume amount of fluid. i.e.∼ ρα or one can divide by the molar mass to

obtain a concentration in terms of moles per unit volume amount of fluid. In this

case, units ofDα andSα change accordingly.

Finally the transport equations assuming that all the physical properties are con-

stant can be rewritten as:

∂ui

∂xi
= 0 (1.7)

∂ui

∂t
+

∂
∂x j

(
uiu j

)
=

1
ρ

∂p
∂xi

+ν
∂2ui

∂x j∂x j
+SM (1.8)

∂T
∂t

+
∂
(
u jT
)

∂x j
= αT

∂2T
∂x j∂x j

+SH (1.9)

∂Cα
∂t

+
∂
(
Cαu j

)

∂x j
= Dα

∂2Cα
∂x j∂x j

+ rα (1.10)

where the term∂
∂x j

(
2Si j

)
in equation 1.2, using continuity,∂∂x j

(
∂u j

∂xi

)

= 0, has

been simplified as:

∂
∂x j

(
∂ui

∂x j
+

∂u j

∂xi

)

=
∂2ui

∂x j∂x j
(1.11)

andαT represents the thermal diffusivity defined asαT = κ/ρCp.

In absence of chemical reactions between species, the reaction term is equal to

zero sorα = 0. If density only depends on temperature, for an isothermalsituation

and in the absence of any other external force, no source termexists, soSM = 0.

On the other hand, temperature differences may induce density differences and this

gives rise to buoyancy. This effect is taken into account through the source term

using the Boussinesq [42] approximation2 for its modellization:

SM = −giβ
(
T −Tre f

)
(1.12)

whereβ is the thermal expansion coefficient defined as:

2gi is the gravity vector
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β =
−1
ρ

(
∂ρ
∂T

)

P
(1.13)

For ideal gases,P = ρRT, and the equation 1.13 can be simplified as follows:

β =
1
T

(1.14)

whereT is expressed as an absolute temperature. Finally,Tre f is a reference

temperature. IfT = Tre f no buoyancy effects are present.

By choosing an adequate set of characteristic scales, a set of non-dimensional

variables can be obtained:

x∗i =
xi

δ
u∗i =

ui

uτ
(1.15)

p∗ =
p

ρ u2
τ

t∗ =
t uτ
δ

(1.16)

T∗ =
T −Tc

∆T
C∗

α =
Cα
C0

(1.17)

whereC0 is the injection concentration for the reference reactive,δ is the chan-

nel half-width,∆T = TH −TC is the difference between hot and cold wall tempera-

ture,TH andTC respectively, anduτ is the friction velocity defined asuτ =
√

τw/ρ
whereτw is the shear stress at the wall defined asτw = µ (∂〈u〉/∂n)|wall. The brack-

ets<> are used to denoteensemble averagedquantities. The averaging procedure

is used to obtain the time averaged transport equation that are explained in detail in

section 3.3.

Including the source terms for buoyancy, for a second order chemical reaction

and for the heat of reaction, equations 1.7, 1.8, 1.9 and 1.10can be rewritten as

(from now on∗ notation have been omitted for sake of simplicity):

∂ui

∂xi
= 0 (1.18)

∂ui

∂t
+u j

∂ui

∂x j
= − ∂p

∂xi
+

1
Reτ

∂2ui

∂x j∂x j
+

Gr
8Re2

τ

(
T −Tre f

)
(1.19)
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∂T
∂t

+u j
∂T
∂x j

=
1

PrReτ

∂2T
∂x j∂x j

+DaϒCACB (1.20)

∂Cα
∂t

+u j
∂Cα
∂x j

=
1

ScReτ

∂2Cα
∂x j∂x j

±DaCACB (1.21)

where the new dimensionless parameters appearing in equations 1.18, 1.19, 1.20

and 1.21 are defined in table 1.1.

Table 1.1: Dimensionless parameters

Reynolds number Reτ = uτδ
ν

Grashof number Gr = ∆T(2δ)3

ν2 gβ

Prandtl number Pr = ν
αT

Schmidt number Sc= ν
DAB

Damkhöler number Da = kδC0
uτ

The definition of the Damkhöler number and the units of the reaction rate,k,

depend on the order of reaction:

[k] =

[

1
s

(
m3

mol

)n−1
]

(1.22)

Da =
k δ Cn−1

0

uτ
(1.23)

wheren is the order of reaction. Forn = 2 the Damkhöler number is presented in

table 1.1. The chemical reaction can be expressed asA+ B−→ P. The± sign in

the source term of the mass transport equation is used to indicate that this term will

be negative for reactants and positive for products provided that reaction rates are

expressed as:

rA = −Da CACB (1.24)

rB = −Da CACB (1.25)

rR = Da CACB (1.26)
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Finally ϒ is a dimensional quantity that relates the heat released or consumed in

the chemical reaction with the sensible heat of the fluid. It is defined as:

ϒ =
∆Ĥ0

r C0

ρ Cp∆T
(1.27)

This nondimensional quantity is similar to the Jakob numberused to relate the

sensible to the latent heats in a boiling fluid.
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Chapter 2

Physical model

The main objective of this work is to analyze the turbulent heat transport in

a channel flow where a hot fluid is released in the channel through a line source.

If the line source and the background carrying fluid have different temperatures,

the formed plume can be affected by buoyancy forces. The flow configurations

considered are based on the fully developed pressure drivenchannel flow between

two parallel, infinite and smooth walls placed a distance 2δ apart. The streamwise,

spanwise and wall-normal directions are denoted asx, y andz respectively. A sketch

of the domain including the coordinate system origin (tagged O) is shown in figure

2.1.

The cases considered in this work are summarized in table 2.1including the grid

resolution, the Reynolds number based on the friction velocity and the half width of

the channel, the Reynolds number based on the bulk velocity and the width of the

channel and the Grashof number and the reference temperature for cases B and C

where buoyancy forces are present.

The dimensions of the channel are 8πδ×2πδ×2δ. The two walls of the channel

are located atz= −δ andz= δ and are considered adiabatic for cases A and C and

at fixed temperatures for case B.

The validation of the code involved the simulation of two flowconfigurations

Table 2.1: Summary of flow configurations
Case Description Grid resolution Reτ Re2δ Gr Tre f Buoyancy

A Passive plume 258×130×130 180 5452 – – None
B Mixed convection 131×101×101 150 2725 9.6·105 0.5 x
C Buoyant plume 258×130×130 180 5472 107 0.0 z
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Figure 2.1: Sketch of the channel configuration

xy
z

Lx

Ly

Lz=2δ

Line source for

cases A and C

O

Flow

named case A and B for which there are results avaliable in theliterature. The

first one, case A, considers the dispersion of a passive scalar released in a channel

flow through a line source centered in the vertical directionas indicated in figure

2.1. In this case the temperature can be considered as a passive scalar. The second

one, case B, is a mixed convection configuration with the buoyancy force aligned

with the streamwise direction. The buoyancy force is produced by a temperature

difference imposed at the two walls of the channel. All the results obtained for

cases A and B show good agreement with data avaliable in the literature as shown

in section 6. The difference between cases A and C is that in case C the velocity and

the temperature fields are coupled by the buoyancy forces acting in the wall-normal

direction.

2.1 Case A: Temperature line source in a channel at

Reτ = 180

The first flow configuration considers the heat transport in a fully developed

channel flow where temperature is released from a line source. In this case, named

A, there is no buoyancy and temperature acts as a passive scalar. The Reynolds
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number isReτ = 180. The molecular Prandtl number isPr = 0.71. The spanwise

direction is considered homogeneous for all variables. In the streamwise direction

homogeneity is considered for the hydrodynamic field but notfor the temperature

where non-reflecting boundary conditions are applied at theoutlet. At the inlet the

source line is implemented as a spanwise band centered in themiddle of the channel

(z= 0) with a size of 2HS whereHS= 0.054δ. Thus, the temperature distribution is

T (0,y,z, t) = T0 = 1 ∀ z∈ [−HS,HS] andT (0,y,z, t) = T∞ = 0, ∀ z∋ [−HS,HS].

2.2 Case B: Mixed convection atReτ = 150and Gr =

9.6 ·105

The configuration for the case B corresponds to a mixed convection fully de-

veloped flow in a vertical channel with the gravity vector aligned with the stream-

wise direction where the momentum and heat transport are coupled by the buoyancy

force. The molecular Prandtl number is 0.71, the Grashof number is 9.6·105 and the

Reynolds number based on the friction velocity isReτ = 150. The streamwise and

spanwise directions are considered as homogeneous and periodic boundary con-

ditions are applied for the velocity, pressure and temperature fields. Both walls

have no-slip boundary conditions. The dimensionless temperatures on the top and

bottom walls are prescribed to beT (x,y,−δ, t) = TH = 1 andT (x,y,δ, t) = TC = 0,

respectively. The dimensionless reference temperature isTre f = (TH +TC)/2= 0.5.

The hydrodynamic variables have been initialized using instantaneous fields

from previous fully developed channel flow results. The temperature has been ini-

tialized with a constant distribution atTre f (no buoyancy). It was found that the

simulations are very sensitive to the initial conditions for temperature. Difficulties

in achieving steady statistics were experienced when temperature was initialized

using a linear profile form the cold wall to the hot wall. It wasfound that for the

mixed convection cases, a very large domain along the streamwise direction was

needed. If a smaller box is used no quasi-steady conditions were obtained and the

bulk velocity and temperature varied with a very low frequency [43].
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2.3 Case C: Buoyant source line in a channel atReτ =

180and Gr = 107

Case C is similar to case A where a line source is vertically centered at the chan-

nel inlet but, as it happened in case B, momentum and heat are coupled through the

buoyancy term. However, in this case, the gravity vector is aligned with thezdirec-

tion (perpendicular to the walls of the channel). The plume formed by the source

line is hotter than the background colder fluid and, due to thedensity differences,

the buoyancy forces deflect the plume towards the top wall.

Streamwise direction for case C is not homogeneous due to thecoupling be-

tween momentum and heat equations and periodic boundary conditions are no valid

in this case. To solve this issue, a buffer region has been attached at the inlet of

the channel section where the line source is considered. This buffer region allows

to obtain the hydrodynamic fields at the inlet of the main domain. Non-reflecting

boundary conditions are implemented at the outlet for hydrodynamic and tempera-

ture variables. A sketch of the computational domain including the buffer is shown

in figure 2.2. The size of the computational domain and the mesh distribution of the

buffer are the same as in the main domain. At each time step theflow in the buffer

region is computed and the velocity and pressure distributions at the outlet of the

buffer region are used as the boundary conditions for the computation of the flow in

the main domain where the plume develops.

The coupling between the velocity and the temperature equations and the con-

sequent non-homogeneity in the streamwise direction requires to implement con-

vective boundary conditions for the hydrodynamic field at the outlet of the do-

main. These boundary conditions, called non-reflecting, were introduced by Jin

and Braza [44] for two dimensional incompressible flows.

In this work, these non-reflecting boundary conditions results have been ex-

tended to a three-dimensional case using an analogous procedure.

Considering the characteristics of the present viscous elliptic flow, an anisotropic

propagation wave equation on the outlet boundary for any transported quantityΘ
(velocity component, temperature, concentration...) canbe written as:

∂2Θ
∂t2 −cx

∂2Θ
∂x2 −cy

∂2Θ
∂y2 −cz

∂2Θ
∂z2 = 0 (2.1)

wherecx, cy andcz are the characteristic velocities of the wave propagation in the
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Figure 2.2: Buffer domain

xy
z

Ly

Lz=2δ

Lx

Buffer domain

Main domain

A

A

B

Periodic boundary conditions

Non-reflecting boundary conditions

A

B

x, y andzdirections respectively. The pseudo-differential operators are introduced:

LΘ ≡ c2
xD2

xΘ+c2
yD2

yΘ+c2
zD2

zΘ−D2
t Θ = 0 (2.2)

whereDx, Dy, Dz designate the partial derivatives with respect tox, y andz,

respectively andDt to denote partial derivative with respect to time. Factorization

of the wave operator,L, gives:

LΘ = L+L−Θ = 0 (2.3)

where

L+ ≡ cxDx +Dt

√

1−a2−b2 (2.4)

and

L− ≡ cxDx−Dt

√

1−a2−b2 (2.5)

where
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a =
cyDy

Dt
(2.6)

b =
czDz

Dt
(2.7)

The relation:

L+Θ = 0 (2.8)

applied to the outlet boundary condition is a total absorption (non-reflecting)

condition [45]. As the pseudo-differential operator is nonlocal in both time and

space variables, the following Padé approximation of the square root
√

1−a2−b2

is used:

√

1−a2−b2 ≈ 1− 1
2

(
a2+b2) (2.9)

and then equation 2.8 can be approximated as:

(

cxDx +Dt −
c2

y

2Dt
D2

y−
c2

z

2Dt
D2

z

)

Θ = 0 (2.10)

The coefficientscy and cz appear because of the anisotropic character of the

present analysis.

Comparison of equation 2.10 with the Navier-Stokes equations 1.19, shows that

the diffusion term in equation 2.10 is reasonably set as(1/Reτ)
(
∂2Θ/∂y2 +∂2Θ/∂z2

)

and the propagation velocitycx is made equal to theu component in order to match

this equation to the Navier-Stokes equations. In a similar way, if Θ represents the

temperature or the concentration of a speciesCα, the coefficient multiplying the dif-

fusive term is(1/ReτPr) or (1/ReτSc) respectively.

Finally the equations for the outlet boundary can be writtenas:
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∂ui

∂t
+u

∂ui

∂x
− 1

Reτ

(
∂2ui

∂y2 +
∂2ui

∂z2

)

= 0 (2.11)

∂T
∂t

+u
∂T
∂x

− 1
ReτPr

(
∂2T
∂y2 +

∂2T
∂z2

)

= 0 (2.12)

∂Cα
∂t

+u
∂Cα
∂x

− 1
ReτSc

(
∂2Cα
∂y2 +

∂2Cα
∂z2

)

= 0 (2.13)

These equations keep a convective/advective term for the main component of

velocity (the streamwise componentu for the channel).

The pressure correctionΦ has Neumann boundary conditions for all boundaries

(inlet, walls and homogeneousy direction) except for the outlet where no correc-

tion is applied to obtain convergence in the iterative procedure to solve the coupling

between the velocity and the pressure fields. This non-consistent boundary condi-

tion would introduce anomalous values for the velocity at the outlet. To correct this

and ensure continuity, the convective velocity at the outlet is recalculated after the

pressure correction step.
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Chapter 3

Mathematical analysis

3.1 The finite volume method

Transport equations are discretized on a staggered grid with the pressure, tem-

perature and concentrations (scalars) calculated in the center of a cell and the ve-

locity components defined at the cell faces.

To introduce the discretization of the transport equationsusing the finite-volume

approach, the conservation law for the transport of a scalarquantityφ in a unsteady

flow in its general form is used:

∂
∂t

(ρφ)+div(ρ~uφ) = div(Γ gradφ)+Sφ (3.1)

By using Gauss’ divergence theorem:

Z

CV
div~a dV =

Z

A
~n·~a dA (3.2)

where~n is the vector normal to surface elementdA.

By changing the order of integration in the time derivate term, the integration of

equation (3.1) over a control volume (CV) and a time step∆t, gives:

Z

CV

[
Z t+∆t

t

∂
∂t

(ρφ)dt

]

dV+

Z t+∆t

t

[
Z

A
~n· (ρ~uφ)dA

]

dt =

Z t+∆t

t

[
Z

A
~n· (Γ gradφ)dA

]

dt+
Z t+∆t

t

[
Z

CV
SφdV

]

dt (3.3)
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whereΓ is a diffusion coefficient.

To demonstrate the integration, the following one-dimensional equation can be

used.

Z e

w

[
Z t+∆t

t

∂
∂t

(ρφ)dt

]

dV +

Z t+∆t

t
[(ρuAφ)e− (ρuAφ)w]dt =

Z t+∆t

t

[(

ΓA
∂φ
∂x

)

e
−
(

ΓA
∂φ
∂x

)

w

]

dt+
Z t+∆t

t
S̄∆Vdt (3.4)

The diffusive flux term is evaluated as:

(

ΓA
dφ
dx

)

e
= ΓeAe

(
φE −φP

δxPE

)

(

ΓA
dφ
dx

)

w
= ΓwAw

(
φP−φW

δxWP

)

(3.5)

Here the upper-case letters (N → north, E → east, etc) subindices refer to the

node point and the lower case letters indicate the face points. The Navier-Stokes

equation 1.19 can now be integrated over a time step∆t and a control volume (CV).

Figure 3.1 shows a staggered grid arrangement for a two-dimensional domain in-

dicating the scalar, the u-component and the v-component control volumes (dotted

lines, red pattern and blue pattern respectively). The use of staggered grids, intro-

duced by Harlow and Welch [46], prevents unrealistic pressure fields [47].

3.2 Temporal integration

3.2.1 Momentum transport equations

The numerical integration of the Navier-Stokes equations demands special at-

tention due to the fact that it is needed to solve the couplingbetween pressure and

velocity. There are different methods described in literature to solve this coupling.

Some popular solutions are MAC [46], SIMPLE [48] and PISO [49]. In this work, a

multistep procedure has been used [50–53]. In the first step,the transport equation

is solved using velocities and pressure from the current time step. The velocity field

obtained,u∗i , may not satisfy the continuity equation. In the second correction step,
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Figure 3.1: Staggered grid for the finite volume approach

ui,j

v i,j

v i,j−1v i−1,j−1

v i,j−2v i−1,j−2

v i−1,j v i+1,j

v i+1,j−2

v i+1,j−1

dxi

dxui

i−2,j+1 i−1,j+1 i,j+1 i+1,j+1 i+2,j+1

i−2,j i−1,j i,j i+1,j i+2,j

i−2,j−1 i−1,j−1 i,j−1 i+1,j−1 i+2,j−1

i+2,j−2i+1,j−2i,j−2i−1,j−2i−2,j−2

i−2,j−3 i−1,j−3 i,j−3 i+1,j−3 i+2,j−3
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ui,j−1

continuity is forced and new pressure and velocity fields areobtained after solving

a Poisson equation involving the pressure correctionΦ and the divergence of the

intermediate velocity fieldu∗i .

The Navier-stokes equations without buoyancy are used to illustrate this step:

Z

CV

(
Z t+∆t

t

∂ui

∂t
dt

)

dV +
Z t+∆t

t

(
Z

CV

∂
∂x j

(
uiu j

)
dt

)

dV =

−
Z t+∆t

t

(
Z

CV

1
ρ

∂p
∂xi

dt

)

dV +

Z t+∆t

t

(
Z

CV
ν

∂2ui

∂x j∂x j
dt

)

dV (3.6)

Integration of each termΨP with respect to time can be written as:

IT =
Z t+∆t

t
ΨPdt =

[
αΨn+1

P +(1−α)Ψn
P

]
∆t (3.7)

whereΨn
P refers to the value at timet, and Ψn+1

P at time t + ∆t and where

the weighting parameterα is 1
2 for Crank-Nicholson, which is the time integration
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scheme that has been used in this work for the momentum transport equations. The

explicit time integration scheme is given byα = 0 and the fully implicit integration

is obtained withα = 1.

Finally equation (3.6) can be discretized as:

un+1
i −un

i

∆t
=

α

[

− ∂
∂x j

(

un+1
i un+1

j

)

+ν
∂2un+1

i

∂x j∂x j

]

− 1
ρ

∂pn+1

∂xi

+(1−α)

[

− ∂
∂x j

(
un

i un
j

)
+ν

∂2un
i

∂x j∂x j

]

(3.8)

Using an intermediate velocityu∗i one can write similarly:

u∗i −un
i

∆t
=

α
[

− ∂
∂x j

(
u∗i u∗j

)
+ν

∂2u∗i
∂x j∂x j

]

− 1
ρ

∂pn

∂xi

+(1−α)

[

− ∂
∂x j

(
un

i un
j

)
+ν

∂2un
i

∂x j∂x j

]

(3.9)

Equation (3.9) is solved iteratively foru∗i . This velocity field does not ought to

satisfy the continuity equation.

By subtracting (3.9) from (3.8):

un+1
i −u∗i

∆t
=

α

[

− ∂
∂x j

(

un+1
i un+1

j

)

+ν
∂2un+1

i

∂x j∂x j

]

− 1
ρ

∂pn+1

∂xi
−

α
[

− ∂
∂x j

(
u∗i u∗j

)
+ν

∂2u∗i
∂x j∂x j

]

+
1
ρ

∂pn

∂xi
(3.10)

By rearranging the previous equations usingH(ui) for the convective and diffu-

sive terms as:
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H(ui) =

[

− ∂
∂x j

(
uiu j

)
+ν

∂2ui

∂x j∂x j

]

(3.11)

the error of replacingH(u∗i ) by H(un+1
i ) is of second order in time [54] and thus

consistent with others errors. Equation (3.10) can be written as:

ρ
(
un+1

i −u∗i
)

∆t
= −∂pn+1

∂xi
+

∂pn

∂xi
(3.12)

By applying the divergence operator to equation (3.12) with∂un+1
i

∂xi
= 0 one ob-

tains:

− ρ
∆t

∂u∗i
∂xi

= −∂2pn+1

∂x2
i

+
∂2pn

∂x2
i

(3.13)

The pressure correctionΦ is defined as

Φ = pn+1− pn (3.14)

so equation (3.13) can be rewritten as:

ρ
∆t

∂u∗i
∂xi

=
∂2Φ
∂x2

i

(3.15)

This Poisson equation is solved using the multigrid procedure. OnceΦ is ob-

tained, one can calculate the new pressurepn+1 using the relation (3.14) and go

back to equation (3.12) to find the new velocitiesun+1
i .

3.2.2 Heat and mass transport equations

The numerical integration of the transport equations has toguarantee the con-

servation of heat and mass. The non-linearity of the convective terms can lead to

spurious oscillations of the temperature or concentrationfields in regions of the

computational domain with sharp gradients. Such oscillations may produce values

out of the range prescribed by the inherent limits imposed bythe boundary condi-

tions. In this work, these large values of the scalar gradients are expected to appear

due to the implementation of a discrete line source at the inflow boundary for cases

A and C.

For reacting flows, the reaction rates, appearing in the conservation equations
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for the different chemical species involved, are expressedas a product of concen-

trations and the sign of this term indicates if the species isa reactant that is being

consumed (negative) or a product that is being generated (positive). In this scenario,

non-physical oscillations are specially important since the out of range values lower

than zero may invert the reaction rate sign.

Some authors overcome this problem related with the large values of the gradi-

ents, at least partially, by setting a smooth concentrationdistribution at the source

[32].

It has been observed that the temporal integration of the scalar transport equa-

tions using the Crank-Nicholson scheme produces such oscillations for cases A

and C. The direct cutting off of these values leads to the non-conservation of the

quantities. To overcome this drawback for these two cases, the fully explicit and

second-order in time Adams-Bashforth scheme was tested:

IT =
Z t+∆t

t
ΨPdt =

[
3
2

Ψn
P−

1
2

Ψn−1
P

]

∆t (3.16)

The explicit Adams-Bashforth temporal integration, used in combination with a

robust advection term discretization scheme, avoids theseoscillations. In this work

two discretization methods for the convective term have been tested: the QUICK-

EST scheme with the ULTIMATE correction [55] and the Total Variation Dimin-

ishing with (TVD) κ = 1
3 [56].

The use of the QUICKEST discretization scheme produces somescalar values

out of range (< 0.001 %) which are removed by simply filtering their values to the

adequate limit value. Some multidimensional approaches have been developed fol-

lowing the ULTIMATE correction [57]. These techniques improve the flow-to-grid

angle dependence and the anisotropic distortion, but require additional CPU and

communication resources. Even though, this procedure requires larger computa-

tional effort compared with the Total Variation Diminishing and problems with the

symmetry of the time averaged temperature profiles were experienced.

The Total Variation Diminishing approach guarantees accuracy and monotonic-

ity by an adequate limiter function in the upwind advection operator. In this work

the κ = 1
3 [56] is used whereκ is the weighting parameter ranging form−1 for

the second-order accurate fully one-sided upwind scheme to1 for the second-order

accurate central scheme. A value between these limits represents a blend between
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these two schemes. Monotonicity is guaranteed using a limiter function that is in-

side of Sweby’s monotonicity domain. The argument for this function is the upwind

ratio of consecutive gradients,r. As example, for the east face of a control volume,

it can be written as:

rE =
φi+1−φi + ε
φi −φi−1 + ε

(3.17)

whererE is the upwind ratio of consecutive gradients at the east faceof a control

volume for aφ variable. The constantε is set to a very small number (1·10−10) and

it is introduced to avoid division by zero in uniform flow regions.

The limiter functionΦ(r) reads:

Φ(r) = max

(

0,min

(

2r,min

(
1
3

+
2
3

r,2

)))

(3.18)

3.3 Averaged transport equations

In time dependent flows the mean of a property at timet is taken to be the

average of the instantaneous values of the property over a large number of repeated

identical experiments: the so calledensemble average. Brackets are used to denote

ensemble averaged quantities. For a instantaneous quantity φ, < φ > is its ensemble

averaged value.

Flows with steady statistics are also called time-independent, i.e. mean values

are not a function of time. It is obvious that in this case bothaverages (ensemble

and time averages) should give the same results. The time averaged value of an

instantaneous quantityφ is defined as:

Φ =
1
∆t

Z ∆t

0
φ(t)dt (3.19)

whereΦ is the mean value and∆t is supposed to be much larger than the largest

time scale of the flow (that corresponding to the largest flow scale). Thus, any

quantity can be expressed as the sum of a mean and a fluctuatingterm asφ(~x, t) =

Φ(~x) + φ′(~x, t) whereφ′ is the time-varying fluctuation. This fluctuation has, by

definition, a mean value equal to zero:

φ′ =
1
∆t

Z ∆t

0
φ′(t)dt = 0 (3.20)
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where an overbarφ′ have been used to denote time-averaging operation. Another

important statistical parameter is the root-mean-square (r.m.s.) of the fluctuations

defined as:

φrms =

√

(φ′)2 =

[
1
∆t

Z ∆t

0

(
φ′
)2

dt

]1/2

(3.21)

This statistic which gives indication of the intensity of the fluctuations is in

practice evaluated as:

φrms =

√

φ2−φ2
(3.22)

Following this approach for the pressure and the velocity components, they can

be written asp = P+ p′, u = U +u′, v= V +v′, w= W+w′, and the time averaged

momentum equations (without source terms) leads to:

∂Ui

∂t
+U j

∂Ui

∂x j
= −∂P

∂xi
+

1
Reτ

∂2Ui

∂x j∂x j
−

∂u′iu
′
j

∂x j
(3.23)

The averaging of the momentum equations gives rise to new extra terms: six

new additional stressesu′iu
′
j . These terms are theReynolds stressesand equations

3.23 are called theReynolds equations.

The time averaged momentum equations governing the fully developed turbu-

lent channel flow without buoyancy can be written as:

0 =
∂P
∂x

− ∂u′w′

∂z
+

1
Reτ

∂U2

∂z2 (3.24)

0 =
∂P
∂z

− ∂w′2

∂z
(3.25)

The integration of 3.25 yields:

P+w′2 = P0 (3.26)

whereP0 is a function ofx only. Becausew′2 is independent ofx (by the fully

developed assumption),∂P/∂x is equal todP0/dx. These two gradients have to be

independent ofx to avoid streamwise acceleration of the flow. Integrating equation

3.24 fromz= −δ, it yields:
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0 = z+δ+
1

Reτ

∂U
∂z

∣
∣
∣
∣
z
− τw− u′w′∣∣

z (3.27)

whereτw is the wall shear stress defined asτw = ρuτ
2.

The overall force balance for the mean flow shows that the meanpressure gra-

dient is balanced by the mean shear stress on the walls (see figure 3.2). Taking a

differential volume of fluid∆V = ∆xLy2δ the force balance can be written as:

Figure 3.2: Global force balance in a channel

z

x

P x

τw2τw1

δ

P x+   x∆

P|xLy2δ− P|x+∆xLy2δ = τw∆xLy (3.28)

And dividing by∆V and taking the limit one obtains:

lim
∆x→0

P|x− P|x+∆x

∆x
=

τw

2δ
(3.29)

Finally, taking into account thatτw = τw1 +τw2 = 2ρuτ
2 and adimensionalizing,

the resulting global balance, can be written as,
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−ρuτ
2

δ
dP∗

dx∗
=

ρuτ
2

δ
(3.30)

dP∗

dx∗
=

dP0

dx
= −1 (3.31)

The non-dimensionalization of the transport equations with the bulk velocity

Ub in the channel configuration would leave two dimensionless parameters: the

Reynolds number,Re, and a mean pressure gradientdp̂/dx wherep̂ is the pressure

adimensionalized with the bulk velocity. The use of the friction velocity uτ as a

velocity scale allows to reduce the number of parameters to one: Reτ. In this case

the mean pressure gradientdP∗/dx∗ is equal to minus one.

The relation between the Reynolds number based on bulk velocity, Re, and

Reynolds number based on friction velocity,Reτ, is:

Re =
Ub δ

ν
(3.32)

Reτ =
uτ δ

ν
(3.33)

Re
Reτ

=
Ub

uτ
=

1
A∗

Z

A∗
U∗dA∗ =

1
LyLz

Z Ly

0

Z Lz

0
U∗dz∗dy∗ (3.34)

The periodicity of the pressure field at the streamwise boundaries of the domain

allows the decomposition of the pressure into a periodic contribution and a linearly

varying term along the streamwise direction. The linearly varying term is the mean

pressure gradientdP0/dx and the periodic term includes only the fluctuationp′.

Using this decomposition, the pressure is now expressed as:

p(~x, t) = p′(~x, t)+
dP0

dx
x (3.35)

where dP0
dx = −1. The pressure term in the momentum equation 1.8 can be

written as:

−∂p
∂x

= −∂p′

∂x
+δi1 (3.36)
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The mean shear stress over a wall can be calculated as:

τw = µ
∂U
∂z

∣
∣
∣
∣
wall

(3.37)

The time-averaging procedure applied to the Navier-Stokesequations can also

be applied to the other transport equations. To average the energy and the mass

transport equations, 1.20 and 1.21 respectively, it is necessary to define the tem-

perature and the concentration as the sum of a mean and a fluctuating term as it

was done before, soT = T +T ′ andCα = Cα +C′
α. The averaged energy transport

equation follows:

∂T
∂t

+U j
∂T
∂x j

=
1

ReτPr
∂2T

∂x j∂x j
−

∂T ′u′j
∂x j

(3.38)

In an analogous way, the averaged mass transport equation for the chemical

specieα (without chemical reactions) follows:

∂Cα
∂t

+U j
∂Cα
∂x j

=
1

ReτSc
∂2Cα

∂x j∂x j
−

∂C′
αu′j

∂x j
(3.39)

Analogous to theReynolds stresses, T ′u′j andC′
αu′j are the turbulent fluxes of

heat and mass.

In what follows, the momentum and energy balances of the averaged momentum

and heat transport equations for the cases stated in table 2.1 are presented.

3.3.1 Case A: Temperature line source in a channel atReτ = 180

For case A (see figure 2.1), only the wall-normal direction isrelevant for the

mean flow, so the integration of the time averaged momentum equation can be ex-

pressed as:

0 = z+δ
︸︷︷︸

1

+
1

Reτ

∂U
∂z

∣
∣
∣
∣
z

︸ ︷︷ ︸

2

− τw
︸︷︷︸

3

− u′w′∣∣
z

︸ ︷︷ ︸

4

(3.40)

whereτw is the shear stress on a wall of the channel and it can be written as (in

nondimensional form):
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τw =
1

Reτ

∂U
∂z

∣
∣
∣
∣
wall

(3.41)

The numeration that appears at the bottom of the equation is used in the next

chapters to identify the different terms of the balances.

Equation 3.40 indicates that locally the mean pressure gradient is balanced by

the friction at the walls and by the Reynolds shear stressu′w′.

For the heat transport equation, the streamwise direction is not homogeneous as

shown in figure 2.1 and the time averaged thermal energy equation can be written

as:

0 = −U
∂T
∂x

︸ ︷︷ ︸

1

+
1

ReτPr
∂2T
∂x2

︸ ︷︷ ︸

2

+
1

ReτPr
∂2T
∂z2

︸ ︷︷ ︸

3

− ∂
∂x

(
T ′u′

)

︸ ︷︷ ︸

4

− ∂
∂z

(
T ′w′)

︸ ︷︷ ︸

5

(3.42)

3.3.2 Case B: Mixed convection atReτ = 150and Gr = 9.6 ·105

In this case the momentum and energy transport equations arecoupled through

the buoyancy term. Both streamwise and spanwise directionsare homogeneous as

it can be deduced from figure 2.1 and the integration of the relevant terms of the

time averaged momentum equation along thez direction can be expressed as:

0 = z+δ
︸︷︷︸

1

+
1

Reτ

dU
dz

∣
∣
∣
∣
z

︸ ︷︷ ︸

2

− τw
︸︷︷︸

3

− u′w′∣∣
z

︸ ︷︷ ︸

4

+
Gr

8Re2
τ

Z z

−δ

(
T −Tre f

)
dz

︸ ︷︷ ︸

5

(3.43)

Similarly, the integration of the thermal energy equation leads to:

0 =
1

ReτPr
dT
dz

∣
∣
∣
∣
z

︸ ︷︷ ︸

1

− 1
ReτPr

dT
dz

∣
∣
∣
∣
−δ

︸ ︷︷ ︸

2

− T ′w′∣∣
z

︸ ︷︷ ︸

3

(3.44)

3.3.3 Case C: Buoyant source line in a channel atReτ = 180and

Gr = 107

In case C, the buoyancy acts in the wall-normal direction andonly the spanwise

direction remains as homogeneous. This implies that the dynamic field in this case
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is not fully developed. The time averagedx -momentum,z -momentum and thermal

energy equations can be written, respectively, as:

0 = − ∂UU
∂x
︸ ︷︷ ︸

1

− ∂WU
∂z
︸ ︷︷ ︸

2

+1− ∂P
∂x

︸ ︷︷ ︸

3

+
1

Reτ

∂2U
∂x2

︸ ︷︷ ︸

4

+
1

Reτ

∂2U
∂z2

︸ ︷︷ ︸

5

− ∂
∂x

(
u′u′
)

︸ ︷︷ ︸

6

− ∂
∂z

(
u′w′)

︸ ︷︷ ︸

7
(3.45)

0 = − ∂UW
∂x
︸ ︷︷ ︸

1

− ∂WW
∂z

︸ ︷︷ ︸

2

− ∂P
∂z
︸︷︷︸

3

+
1

Reτ

∂2W
∂x2

︸ ︷︷ ︸

4

+
1

Reτ

∂2W
∂z2

︸ ︷︷ ︸

5

−

∂
∂x

(
w′u′

)

︸ ︷︷ ︸

6

− ∂
∂z

(

w′2
)

︸ ︷︷ ︸

7

+
Gr

8Re2
τ

(
T −Tre f

)

︸ ︷︷ ︸

8

(3.46)

∂UT
∂x
︸ ︷︷ ︸

1

+
∂WT

∂z
︸ ︷︷ ︸

2

=
1

ReτPr
∂2T
∂x2

︸ ︷︷ ︸

3

+
1

ReτPr
∂2T
∂z2

︸ ︷︷ ︸

4

− ∂
∂x

(
T ′u′

)

︸ ︷︷ ︸

5

− ∂
∂z

(
T ′w′)

︸ ︷︷ ︸

6

(3.47)
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Chapter 4

Parallel approach

The 3DINAMICS code was developed at the Mechanical Engineering Depart-

ment by the ECoMMFiT research group [1]. The code, written inFortran 90, was

initially used to simulate forced and natural convection incubical cavities. This

code evolved to deal with more complex geometries and configurations. Currently,

it is used in the Direct Numerical Simulation (DNS) of turbulent channel flows.

The DNS demands high requirements in terms of memory and CPU effort even for

relatively small Reynolds numbers. In order to solve accurately all the scales of

the flow it is necessary to use very fine grids, specially near solid boundaries where

gradients and stresses are large. Parallel computers allowto deal with such large

problems by splitting the computational work between several nodesor processes

working in parallel. CFD is one of the fields in which the parallelization techniques

have experienced major developments in recent years. This work started with an

initial parallel version of the 3DINAMICS code. This version was modified to im-

prove its memory efficiency and a parallel multigrid solver for massive systems of

linear equations was implemented.

There are several ways to classify the parallel computers but there are two cru-

cial categories depending on how memory is used from a set of CPUs: one can

find shared memory and distributed memory computers. In the former case, all pro-

cesses share a large common memory containing all the data. Every process can

access this memory but only one can access the same data at thesame time. On the

other hand, in distributed memory computers, each process has its own independent

memory containing only a part of the data. This memory can notbe accessed di-

rectly by any other process. If a process requires data from another one, it needs
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to communicate to allow the transfer (a message) of this information. Information

transfer from one process to another is calledmessage passing.

There is a lot of literature discussing about the advantagesand drawbacks of

both computer paradigms. Shared memory computers facilitate an easy program-

ming without any need for communication. However, their scalability is limited

and it is difficult to increase the number of processes existing in a shared-memory

machine. When the number of processes grows, data flow between processes and

the unique memory, become a bottleneck. On the other hand, distributed memory

machines allow to scale the computer by adding more processes easily. The price

lie in the fact that programming become more complex and tedious due to the need

of communication. This is the case of the popular low-cost clusters. Figure 4.1

contains simple sketches of these two architectures.

Figure 4.1: Distributed and shared memory

CPU CPU CPU CPU

MEMORY

SHARED MEMORY MODEL

CPU CPU CPU CPU

MEMORY MEMORY MEMORY MEMORY

COMMUNICATOR COMMUNICATOR

DISTRIBUTED MEMORY MODEL

Nowadays, low cost and technological advances allow users to build relatively

cheap clusters of computers mixing different type of architectures. This is the case

of the cluster of the ECoMMFiT research group namedTROMAwhich integrates

24 nodes AMD Opteron used for the numerical simulations presented in this study.

To develop the parallel version of the 3DINAMICS code, the MPI (Message

Passing Interface) was chosen, specifically, the open source MPI-CH library. The

algorithm used to solve the transport equations described in section 3 was paral-

lelized by sharing the work load between the processes in acommunicator.

In the domain decomposition approach the work sharing between processes is

achieved by splitting a computational domain into sub-domains. Different sub-

domains are then distributed over different nodes that workon its portion of data.
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The processes or nodes that form a group inside which a communication occurs

are called acommunicator. Usually this parallel work can not be done in an au-

tonomous way for every node because processes need data fromother processes

during calculations. So the nodes need to communicate during the work progress.

In figure 4.2 it is shown a sketch that illustrates a domain decomposition for

a 2D computational grid. This can be a typical CFD case using the finite volume

approach. Suppose that this domain is split into two sub-domain sharing an in-

terface. Each node must be updated using data from the contiguous nodes in the

discretization stencil. Nodes close to the interface will need data stored in the nodes

in the adjacent process. It is necessary to communicate bothprocessors through

the interface to exchange their data and, consequently to create a buffer zone where

transfered data is stored. The size of this zone, usually called halo, depends on the

discretization stencil. The case shown in figure 4.2 has an halo of width 1 because it

takes only one row in each sub-domain. Higher order discretization schemes make

necessary to take larger halo regions in order to communicate all the values of the

nodes of the halo.

Figure 4.2: Communication between processes

Halo
Region

Proc #1

Proc #2

The computational domain considered in this study is Cartesian. The decom-

position of the domain to assign equal work loads to each process is simply direct

(small differences in the number of grid nodes in each sub-domain has no significant

effect on the parallel efficiency). There are several ways todecompose the domain.
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A one-dimensional decomposition was used to minimize the number of interfaces

between processes although this approach requires the use of larger buffers during

communications because of the larger interface. The splitting direction was chosen

to avoid communications along the homogeneous directions of the flow.

To evaluate the parallel efficiency, the concept ofspeed-upneeds to be intro-

duced. This quantity is used to determine how scalable a codeis. Thespeed-upis

defined as:

S=
tP1

tPn

(4.1)

wheretP1 is the computational time required by one process to performa work

load andtPn is the computational time required byn processes working in parallel

to complete the same task.

A linear speed-uprepresents the ideal behavior for a parallel code. It would

mean that the use of 2n processes to complete a task is half the time necessary to

complete it usingn processes. Taking into account that any communication, as a

task, takes some time to complete, theoretically a linearspeed-upis only possible if

that task does not require communications to complete, so work can be completely

parallelized and a process does not need any data from other processes.
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Chapter 5

Multigrid techniques

The coupling between the pressure and the velocity fields in the momentum

transport equations is solved in this study by using a multi-step procedure as it was

presented in section 3.2. The key step of this procedure involves the solution of a

Poisson-type equation (3.15). This type of equations can berewritten in a matrix

form as:

AΦ = f (5.1)

whereA is the matrix coefficients andf is the source term (as it was shown in

section 3, this term is proportional to the divergence of theintermediate velocity,

u∗i ).

In the previous versions of the code 3DINAMICS, a Conjugate Gradient method

was used to solve equation 5.1. This step took up to 50− 60% of the total com-

putational time for Adams-Bashforth scheme and 35−40% for Crank-Nicholson

scheme. In both cases it was the most time consuming stage of the algorithm. The

reduction of the CPU costs in this bottle-neck step has an important impact on the

reduction of the total CPU time. In order to improve the computational efficiency

of the code, a multigrid solver was implemented to substitute the conjugate gradient

procedure. Multigrid methods have become very popular in scientific and engineer-

ing fields as a powerful solver for different type of massive systems of equations,

specially for linear systems as those resulting from the discretization of partial dif-

ferential equations using the finite-volume approach [58–61]. In addition it has

been shown that multigrid techniques are less sensitive to the grid stretching [62]

than other methods.
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In order to introduce the multigrid methods, it is necessaryto explain some

definitions and concepts. The algebraic error and the residual of an approximate

solution,Φ′, to equation 5.1 can be defined as:

e= Φ−Φ′ (5.2)

r = f −AΦ′ (5.3)

Obviously, the error is as inaccessible as the solution. Theresidual is a measure

of the amount by which the approximation fails to satisfy theoriginal problemAΦ =

f . It is also a vector and due to the uniqueness of the solution,r = 0 only if e= 0.

However, it may not be true that whenr is small in norm,e is also small in norm.

Remembering the definition ofr and e and AΦ = f , it is possible to derive an

important relationship:

Ae= r (5.4)

Equation 5.4 indicates that the error satisfies the same set of equations as the

unknownΦ when f is replaced by the residualr. This residual equationplays a

vital role in the multigrid approach. To improve any approximation of the solution

Φ′, the residual equation can be solved foreand then compute a new approximation

using the definition of the error:

Φ = Φ′ +e (5.5)

A large number of numerical methods to solve equation (5.1) can be found in

the literature. The classical relaxation methods (Gauss-Seidel, SOR, etc) exhibit an

important degradation in terms of convergence rates after afew iterations. This is

due to the fact that these methods deal correctly with the high frequency components

of the error vector but they experience difficulties to damp the low-frequency error

components. Multigrid techniques overcome this drawback by projecting the error

vector over coarser grids to convert the low frequency components to high frequency

components in the coarse grids.

Thus, Multigrid techniques are based on two concepts:

• Nested iteration: Smoothers or relaxation solvers need an initial solution to

start the iteration. In the nested iteration concept, this initial solution comes
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from a previous relaxation over a coarser grid for the same problem. At the

same time this initial solution has been obtained from a previous relaxation

on a even coarser grid.

• Correction scheme: Smoother or relaxation methods show a good conver-

gence rate only for the first iterations. After that, this rate degradates as the

iterative process advances. This is due to the fact that thistype of smoothers

deals correctly with the high frequency errors. This low amplitude errors are

damped during first iterations. Low frequency errors are more difficult to re-

duce and the convergence rate diminishes. To correct this, the error vector is

projected over a coarser grids transforming the low frequency error compo-

nents in higher ones. After that, this low-level error solution can be projected

back to the finer grid to obtain the final solution.

Sub-grid levels for multigrid can be generated in differentways depending on

requirements. One can generate sub-grid levels from scratch taking into account

that lower levels grids use to have half of nodes that the finerpreceding grid [63].

On the other hand, it can be convenient to generate sub-grid levels taking the pre-

ceding grid as a reference. In 3DINAMICS, sub-grid levels have been generated by

imposing a grid number of pointsPN for level N asPN = 2N +2. If the number of

processes is an exact divisor of the number of grid points in adirection, this means

that it is possible to build a grid hierarchy as that presented in figure 5.1. With this

approach it is possible to avoid communication during the intergrid transfer steps

(interpolation and projection) and only in the smoothing steps it is necessary to

transfer information from neighbor processes. The drawback of this subgrid gen-

eration approach is that it is not possible to choose any arbritrary number of grid

points for the original grid. It should be in the form of 2N + 2 and the number of

processes should be an exact divisor of this number.

The iterative procedure is shown in figure 5.2. This case usesthree grid levels

where the top one (tagged asN = 3) represents the original finer grid. Level 1 repre-

sents the coarsest grid and level 2 is an intermediate grid resolution. The algorithm

starts by projecting the original problem stated in equation 5.1 in the coarsest grid

and solving it. Once this is done, the solution is projected to the upper level and

relaxed. The residual is projected again to the coarsest level and it is solved again in

terms of the residual equation 5.4. The solution is projected again to the upper level,
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Figure 5.1: One-dimensional multigrid hierarchy

n=4; 2 +2=18
n

n=3; 2 +2=10
n

n=2; 2 +2=6
n

Proc #1 Proc #2 Proc #3 Proc #4

relaxed and projected finally to the finer grid level. The nested iteration provides

an initial solution by relaxing the original problem on coarser levels where it has

been projected. From here on, the solution is iteratively improved by relaxing over

different levels of grids taking advantage of the correction scheme idea. There are

different ways for visiting the grids. In figure 5.2, theV-cycleis illustrated. This

name refers to the shape of the grid sequence path. Other common option is the

W-cycle.

Figure 5.2: Full Multigrid with V-cycle for three levels

N=3 (top level, original finest grid)

N=1 (coarsest grid)
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In multigrid techniques it is necessary to take some decisions. It is necessary to

choose thesmoother, the type of cycle (V, W, or even others), the number of grids,

the number of relaxation sweeps to do in each grid (ν1 andν2 for the downward and

upward directions in the V-cycle respectively) and the transfer operatorsI2
hh and

Ih
2h (interpolation from fine-to-coarse and projection from coarse-to-fine operators

respectively).

Multigrid efficiency has been compared with that of the Conjugate gradient

solvers for the Poisson equation. The set of conjugate gradient solvers checked

includes the standard one (henceforth CG) and the Bi-Conjugate stabilized ver-

sion (Bi-CGSTAB) [64]. These solvers are conceptually verydifferent from the

smoothersas Gauss-Seidel or SOR. The last, finds the solution by solving iteratively

the jth equation of the set indicated in equation 5.1 for thejth unknown using the

current approximation for the neighbor unknowns. This is anexample ofstationary

linear iteration. On the other hand, the conjugate gradient methods transform the

problem stated in equation 5.1 into a minimization problem where the minimum

value of the target function (derived from the quadratic form of the original prob-

lem) is equal to the solution of the linear system of equations. The basic idea in

which CG is based deals with the finding of the steepest direction in the minimiza-

tion function and to advance iteratively until the solutionis reached. The key point

is how to find such search direction and how large are the stepsto advance towards

the solution. The set of search directions are chosen to beA-orthogonal (whereA

refers to the coefficient matrix) orconjugateand can be generated by aConjugate

Gram-Schmidt process.

The CG method may not be suitable for non-symmetric systems because the

residual vectors cannot be made orthogonal with short recurrences. The biconju-

gate gradient method (Bi-CG) uses another approach. It replaces the orthogonal

sequence of residuals by two mutually orthogonal sequences. Few theoretical re-

sults are known about the convergence of the Bi-CG method. For symmetric pos-

itive definite systems, the method delivers the same resultsas the CG method, but

with twice the cost per iteration. For non-symmetric matrices, it has been shown

that in phases of the process where there is significant reduction of the norm of

the residual, the method is more or less comparable to the full generalized mini-

mal residual method (GMRES) in terms of numbers of iterations [65]. However, in

practice, it has been observed that the convergence behavior may be quite irregular,
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and the method may even break down. Finally, the biconjugategradient stabilized

method (Bi-CGSTAB) appears as a suitable method to solve non-symmetric prob-

lems avoiding the irregular convergence patterns of other CG versions.

The convergence criteria for the comparison of the different methods can be

written as,

||Aφ′− f ||
|| f || ≤ 10−3 (5.6)

The test has been performed considering two synthetic casesand the turbulent

fully developed plane channel flow. The two synthetic cases correspond to a case

with Dirichlet (fixed value) boundary conditions and another case with Neumann

(null derivative) boundary conditions. In the synthetic cases the source termsf

have been chosen in order to obtain analytical solutions forΦ. Those solutions

have been obtained because of the simplicity and smoothnessof the sources terms.

On the other hand, the source term in a simulation of a turbulent flow resulting from

the divergence of the intermediate velocity vectoru∗i is more complex.

The availability of analytic solutions for the synthetic cases allows to check the

numerical results. Both synthetic cases have been solved for Cartesian uniform and

non-uniform grids. The node locations for non-uniform grids in synthetic cases have

been generated using a geometric progression which is controlled by a geometric

parameterr. The larger the parameter, the larger degree of stretching on grid is

obtained. Excessive stretching may lead to numeric instabilities and convergence

problems so valuesr < 1.2 are recommended.

This geometric parameterr is defined as:

r =
xi+1−xi

xi −xi −1
i = 2,3, ...,ni−1 (5.7)

The grid resolution for these synthetic cases is 130× 130× 130 (almost 2.2

million grid points). Note that a much smaller grid resolutions lead to small work

load/communication ratios. The fraction of the computational time devoted to com-

munication between processes may represent a large fraction of the total time or

even the most important part. Parallel computing only has sense when work loads

are large enough to take advantage of the parallel work despite the lagging in com-

munication.

Much larger grid resolutions would not be in the resolution range of the CFD

problems currently solved and it would require prohibitiveCPU and memory re-

44

UNIVERSITAT ROVIRA I VIRGILI
DIRECT NUMERICAL SIMULATION OF TURBULENT DISPERSION OF BUOYANT PLUMES IN A PRESSURE-DRIVEN CHANNEL FLOW.
Alexandre Fabregat Tomàs
ISBN: 978-84-690-7781-8 / DL: T.1236-2007



quirements.

For the fully developed channel flow it has been considered only the compu-

tational times used to solve the Poisson equation in the CFD code so it does not

correspond to a complete time step but only to the pressure correction part. The

grid resolution in this case is 258× 130× 130 and the source term is generated

with the divergence of the intermediate velocity as shown inequation 3.15. For this

case, the solution of the linear system corresponds to the pressure correction field

as explained in chapter 3.

• Synthetic case: Dirichlet boundary conditions

In the case of Dirichlet boundary conditions the constant source term for the

domainΩ[0,1] is:

∂2Φ
∂x2 +

∂2Φ
∂y2 +

∂2Φ
∂z2 = Q = −1 (5.8)

whereQ is the source term. All boundary values are set to zero.

With these boundary conditions, the corresponding analytical solution is:

Φ(x,y,z) =
∞

∑
n=1

∞

∑
m=1

∞

∑
p=1

bnmpsin
nπx
Lx

sin
mπy
Ly

sin
pπz
Lz

(5.9)

whereLx, Ly andLz are the dimensions of the domain and the termbnmp is

defined as:

bnmp =

−1
λnmp

R Lz
0

R Ly
0

R Lx
0 Qsen(nπx/Lx)sin(mπy/Ly)sin(pπz/Lz)dxdydz

R Lz
0

R Ly
0

R Lx
0 sen2(nπx/Lx)sin2(mπy/Ly)sin2(pπz/Lz)dxdydz

(5.10)

where

λ =

(
nπ
Lx

)2

+

(
mπ
Ly

)2

+

(
pπ
Lz

)2

(5.11)

Finally the solution can be written as,
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Φ(x,y,z) =
∞

∑
n=1

∞

∑
m=1

∞

∑
p=1

8
λ

(
1−cos(nπ)

)(
1−cos(mπ)

)(
1−cos(pπ)

)

nmpπ3

sin
nπx
Lx

sin
mπy
Ly

sin
pπz
Lz

(5.12)

• Synthetic case: Neumann boundary conditions

For the Neumann boundary conditions case, the source term for the domain

Ω[−1
2, 1

2] was chosen as:

∂2Φ
∂x2 +

∂2Φ
∂y2 +

∂2Φ
∂z2 = 24x+24y+24z (5.13)

The corresponding analytical solution with∂Φ
∂xi

= 0 atxi = −1
2 , 1

2 is:

Φ(x,y,z) = 4(x3 +y3+z3)−3(x+y+z) (5.14)

It is important to note that when all boundary conditions areNeumann-type

the problem may be not well-posed [66]. If the problem has a solution, this

is not unique because the system involves only derivatives of Φ. If a solution

exist, then the source termf must satisfy:

Z

V
f (x,y,z)dV = 0 (5.15)

This compatibility conditionis necessary for a solution to exist [66]. This

condition has been introduced in the multigrid approach to obtain a well-

posed problem. This means that the termf (x,y,z) must fit the compatibility

condition expressed in equation 5.15 in its discrete form for a gridh:

NI,NJ,NK

∑
i, j ,k

fh(xi ,y j ,zk)dxidyjdzk = 0 (5.16)

In each grid the termfh can be substituted bȳfh:

46

UNIVERSITAT ROVIRA I VIRGILI
DIRECT NUMERICAL SIMULATION OF TURBULENT DISPERSION OF BUOYANT PLUMES IN A PRESSURE-DRIVEN CHANNEL FLOW.
Alexandre Fabregat Tomàs
ISBN: 978-84-690-7781-8 / DL: T.1236-2007



f̄h = fh−
NI,NJ,NK

∑
i, j ,k

fh(xi ,y j ,zk)dxidyjdzk = 0 (5.17)

On the other hand, an integration constant must be set in order to found a

unique solution. To save computational CPU time this procedure is only ap-

plied in the coarsest levels [66]:

NI,NJ,NK

∑
i, j ,k

Φh(xi ,y j ,zk)dxidyjdzk = 0 (5.18)

The results comparing the different solvers tested includethe speed-upvalue

and the CPU time in seconds.

Results in terms ofspeed-upare shown in figure 5.3 for equation 5.8 (a and b)

and equation 5.13 (c and d) with an uniform grid (b and d) and with a non-uniform

grid (a and c).

The linearspeed-uphas been introduced in figure 5.3 for comparison. This lin-

ear profile indicates the ideal situation where there is no loss of efficiency due to

communication and the work load is perfectly shared betweenthe processes. The

communications between processes and, to a lesser extent, the network latency and

the imbalanced work load between processes are responsiblefor deviations from

this ideal approach.

It is important to note that there is a basic difference between the algorithms for

the standard CG and the Bi-CGSTAB methods. The second one preconditionates

the function matrix and this represents an additional matrix-vector product which

implies additional operations per iteration and, consequently, additional communi-

cations. In other words, Bi-CGSTAB usually solves the same problem as CG with

more CPU operations (and consequently communications) butthe number of itera-

tions can be smaller depending on the problem.

Results are presented in figure 5.4 in terms of CPU time (in seconds).

Using 8 processes to solve any of the synthetic cases, the value ofspeed-upfor

multigrid is between 2 and 3 while it is between 4 and 6 for the conjugate gradient

methods (see figure 5.4). For uniform grids the CG requires smaller CPU times than

the Bi-CGSTAB but in terms ofspeed-upthe last one is better (see figures 5.3b,d
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Figure 5.3: Speed-up for different Poisson solvers
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and 5.4b,d). In fact, aspeed-upvalue of 6 for the Dirichlet case with uniform grid

is the highest obtained in this analysis. This situation is opposite for the synthetic

cases using non-uniform grids. The Bi-CGSTAB, more suitable for non-symmetric

matrices, is between 1.1 and 1.7 times faster than the CG but itsspeed-upis not as

good as that found for the CG (see figures 5.3a,c and 5.4a,c).

Scalability differences between the CG and the Bi-CGSTAB are small for the

Neumann boundary conditions problems for uniform and non-uniform grids. For

Dirichlet boundary conditions this differences are more significant. Note that CPU

time scale in figure 5.4 is logarithmic, so results for these two methods have to be

read carefully because differences may seem smaller.

For the channel flow case, the grid resolution corresponds tothat used in cases A

and C (258×130×130) so the comparison gives realistic and practical information

about the computational costs of these simulations. It is important to note that this

grid resolution is the double than that used in the syntheticcases. Another important

difference between the channel flow case and the synthetic cases lies in the nature

of the source term in equation 5.1. For the synthetic cases the source term is a
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Figure 5.4: CPU time (seconds) comparison for different Poisson solvers
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smooth function with very large scales while in the channel case it comes from the

divergence of a turbulent velocity field with large range of scales. This is the reason

because the computational CPU times are larger than in the synthetic cases (see

figures 5.4 and 5.5b). For instance, for the synthetic case with Neumann boundary

conditions and a non-uniform (which is the most similar to the pressure calculation

in term of boundary conditions type and grid stretching), the CPU time required by

Bi-CGSTAB was about 16 CPU seconds using 8 processes and 28 for CG). For the

pressure calculation in the fully developed channel flow, the CPU times for these

methods were approximately 25 and 129 seconds respectively. For multigrid, the

synthetic case took 0.7 seconds of CPU time and the pressure calculation used 7

seconds approximately. In terms ofspeed-up, the results are quite similar to those

obtained for the synthetic cases. The CG has the best scalingfactors and multigrid

is the fastest solver although it shows again the smallest scaling factors.

For all the cases studied, both conjugate gradient methods scale much better

than multigrid. This is due to the fact that the number of calls for communica-

tion tasks is much larger in the multigrid algorithm than in the conjugate gradient
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solvers. The multigrid solver core is asmoother(SOR in this case [67]) so it needs

to perform a sweep to update solution and it is required to communicate the data

located in the halo regions. At the beggining of the nested iteration procedure, the

problem has to be solved accurately at the coarsest grid. Although the number of

grid points at this level is small, it still requires a large number of sweeps to meet

the convergence criteria. The number of sweeps required at the next solver stages in

the coarsest grid are continously smaller because the solution is progressively im-

proved. The number of sweeps in the relaxing steps is very small (typically ν1+ν2

is less than 10) but the grid resolutions are finer and consequently the communi-

cation buffers are larger. However, the CPU times for multigrid are smaller than

those corresponding to conjugate gradient solvers as showncomparing figures 5.4

and 5.5b. Factors around 10 are common and larger factors arepossible especially

for Dirichlet cases. This means that solving a Poisson equation with multigrid is

much more efficient than using conjugate gradient methods interms of CPU time

for a given communicator.

Figure 5.5: Comparison of different solvers for the pressure equation in the channel
configuration
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Previous results for this comparison showedspeed-upvalues of multigrid smaller

than one. For a certain number of processes, the CPU time required to perform a

task was larger than that required for a smaller number of processes. The reason

was that the communication time was extremely large. This was solved using the

hierarchy shown previously in figure 5.1 because this approach allows to eliminate

communications in the intergrid operations. The grid transfer of a vector from a fine

to a coarse grid is clearly direct without any communicationbecause all grid coarse

50

UNIVERSITAT ROVIRA I VIRGILI
DIRECT NUMERICAL SIMULATION OF TURBULENT DISPERSION OF BUOYANT PLUMES IN A PRESSURE-DRIVEN CHANNEL FLOW.
Alexandre Fabregat Tomàs
ISBN: 978-84-690-7781-8 / DL: T.1236-2007



nodes lie between fine grid nodes. However, in the inverse procedure, all fine grid

nodes lie between coarse grid points except those in the haloregion. To interpo-

late over this nodes one would require information from adjacent nodes implying

communication. Such problem can be solved by assigning to this halo points in the

fine grid the injected value coming from the closest coarse grid nodes. The error

associated with this approximation is corrected in the relaxation stages.

Finally to summarize, multigrid solvers efficiency and robustness depend mainly

on [68]:

• Number of grid levels and number of relaxation sweeps on eachlevel

• Interpolation operators used in inter-grid transfers

• Type ofsmoother(points, lines, planes, over-relaxation, etc)

• Coarse grid generation strategy

• Grid anisotropy and type of boundary conditions
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Chapter 6

Results and discussion

In this chapter, the numerical results for the different flowconfigurations con-

sidered in this study are presented and discussed. The validation of the code has

been performed by comparison with data avaliable in the literature.

The turbulent flows considered in this study include:

• Base case: Fully developed channel flow atReτ = 150

• Case A: Scalar line source in a channel atReτ = 180

• Case B: Mixed convection atReτ = 150 andGr = 9.6 ·105

• Case C: Buoyant source line in a channel atReτ = 180 andGr = 107

6.1 Base case: Fully developed channel flow atReτ =

150

The size of the computational domain is 4πδ × 2πδ × 2δ along the stream-

wise, spanwise and normal to the walls directions, respectively. The streamwise (x)

and spanwise (y) directions are homogeneous so periodic boundary conditions have

been applied for the hydrodynamic variables (velocity and pressure). No-slip and

Neumann boundary conditions have been implemented on the walls for velocity and

pressure respectively. The grid has a resolution of 129× 121× 121 points and has

been stretched near walls using a logarithmic transformation [69]. The minimum

scalar finite volume size is∆z+
min = 0.3 for the finite volumes located adjacent to

the wall, where superscript ’+’ indicates non-dimensional wall coordinates defined
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in equation 6.1. The non-dimensional time step for time integration has been set to

∆t = 10−3.

x+
i = xi

uτ
ν

= xi
∗Reτ (6.1)

Stretched grids allow to capture the smallest turbulent scales near the wall by

using higher resolution inside the boundary layer where gradients and stresses are

larger. The flow has been initialized using previous resultsfor fully-developed chan-

nels.

The Reynolds number based on the bulk velocity and the channel width is

Re2δ = 4546 and the friction factor (defined in equation 6.2) isCf = 0.0088. These

results are in agreement with DNS of Iwamoto [70] who reported Re= 4560 and

Cf = 0.0087 at the same Reynolds number.

Cf =
τw

1
2ρU2

b

=
2

ReτU∗
b

2

∂U∗

∂z∗

∣
∣
∣
∣
w

(6.2)

Figure 6.1 shows the mean streamwise velocity profile and theroot-mean-square

(r.m.s.) for the three velocity components. These results are compared with previous

DNS [70] showing good agreement as can be seen in figure 6.1. Itshould be noted

that Iwamoto [70] performed the simulations with a spectralcode with a resolution

of 128 modes along the homogeneous directions of the flow and agrid of 97 along

the normal to the wall direction with a domain size of 5πδ× 2πδ×2δ. This can

explain the slight differences observed in figure 6.1b.

6.2 Case A: Scalar line source in a channel atReτ =

180

This case is similar to the previous one with periodic boundary conditions for

hydrodynamic variables along the homogeneous directions and no-slip boundary

conditions on the walls. However,Reτ is now 180 so the grid resolution has been

increased. The scalar transport can be modeled using the energy equation 1.20

where temperatureT stands for a passive scalar so the buoyancy effect is neglected.

At the inlet of the computational domain the source line is implemented as a span-

wise band centered in the vertical direction injecting the scalar on the horizontal
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Figure 6.1: Mean (a) and (b) r.m.s. profiles for pressure-driven channel atReτ = 150
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midplane of the channel.

The size of the domain is 8πδ × 2πδ × 2δ with a grid resolution of 258× 130

× 130 (4.360.000 points approximately). The Prandtl number is set to 0.71. The

time step for integration has been set to∆t = 5·10−4. The statistical quantities have

been obtained after averaging for a time period of 60t∗.

Interpolated results from an instantaneous flow field atReτ = 150 case have been

used as initial conditions.

Figure 6.2 shows a slice atx = 12 with the instantaneous velocity field over the

corresponding pressure field for the channel flow atReτ = 180.

An instantaneous temperature field slice aty= 0 is shown in figure 6.3. It can be

seen how the temperature is dispersed in the channel forminga non-buoyant plume.

Close to the source, it can be observed clearly the meandering of the plume. At this

stage the width grows as in an homogeneous flow. At largex positions, it is possible
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Figure 6.2: Instantaneous velocity and pressure fields atReτ = 180

to see the effect of turbulent mixing forming complex structures and the effect of

the inhomogeneity induced by the walls on the plume dispersion. Color range is not

linear to highlight details.

Figure 6.3: Instantaneous temperature field from a line source atReτ = 180

Figure 6.4 shows the mean velocity profile compared with DNS of a fully de-

veloped channel flow atReτ = 180 reported by Iwamoto [70]. This author used a

grid resolution of 128×128×128 with a domain size of 12.8δ×6.4δ×2δ. Slight

differences that can be observed in figure 6.4 can be explained due to the fact that

Iwamoto [70] use spectral methods to solve the momentum equations in the homo-

geneous directions.

Figure 6.5 shows the comparison between the present predictions of the plume

half-width and mean centerline scalar decay and DNS performed by Brethouwer

and Nieuwstadt [38] and Vrieling and Nieuwstadt [32].
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Figure 6.4: Mean (a) and r.m.s. (b) velocity profiles
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Brethouwer and Nieuwstadt [38] simulated the flow field in a fully developed

channel flow with a vertically centered line source atReτ = 180 andSc= 0.7 with

a grid resolution of 225× 120× 78 in a computational domain with sizes 10δ×
6δ×2δ in the streamwise, spanwise and wall-normal directions respectively. These

authors also considered the simulation of a scalar field withchemical reaction with

a line source near the wall. In this case the computational domain was expanded up

to 30δ×6δ×2δ by periodic extension of the flow field.

Vrieling and Nieuwstadt [32] used a grid resolution of 150× 96× 150 in a

computational domain with sizes 10δ× 6δ× 2δ in the streamwise, spanwise and

wall-normal directions respectively to simulate dispersion and chemical reactions

for a vertically centered single source in a fully developedchannel atReτ = 180 and

Sc= 1.0. These authors used larger domain sizes and resolutions for the simulations

considering two source lines.

It is important to note that Brethouwer and Nieuwstadt [38] considered a smaller

size for the line source (HS = 0.028δ) than that used in this study (HS = 0.054δ).

This would explain the smaller half-width predicted by Brethouwer and Nieuwstadt

[38] for the formed plume in comparison with that of the present results as shown in

figure 6.5b. However the evolution of the plume half-width agrees with that reported

by Vrieling and Nieuwstadt [32] who considered a Gaussian line source with width

σ0 = 0.04. Also the similar grid resolution used along the wall normal direction of

the present simulation and of Vrieling and Nieuwstadt [32] can explain the different

trends ofσ along the streamwise direction in figure 6.5b of these two simulations in

comparison with that of Brethouwer and Nieuwstadt [38].
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The mean centerline temperature decay rate for homogeneousturbulence is well

described by a power law of the formT/T0 ∝ (x/h)n according to Karnik and

Tavoularis [15]. The fit of the present results to this power law, gives a value

n = −0.6 which is the same than that reported by Lavertu and Mydlarsky [33].

This value is smaller than that obtained for homogeneous turbulence for which

n = −0.75 to −1.0 for distancesx/M ≥ 1 whereM is the mesh length of the

turbulence-generating grid. These authors suggest that atlarger values ofx the

exponentn should decrease to values of the order of−0.5 [9].

The present prediction of the rate of the decay of the mean centerline tempera-

ture shown in figure 6.5a differs slightly from that of Vrieling and Nieuwstadt [32]

probably because these authors used a Gaussian profile for the source in order to

avoid or minimize non-physical oscillations associated with large scalar gradient

values near the source.

Figure 6.5: Mean centerline decay (a) and half-width plume (b) for temperature
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Figure 6.6 shows the comparison of the r.m.s. profiles with numerical results

of Brethouwer and Nieuwstadt [38] and experiments carried out by Sawford and

Sullivan [71]. These authors measured the dispersion in grid generated turbulence.

The homogeneous turbulent flows (as those obtained using grid turbulence) show

double peaks in the r.m.s. profiles far downstream as shown infigure 6.6. The

non-homogeneity in wall-normal direction introduced in channel flows does not

show this feature tending to exhibit a single peak in the r.m.s. profiles as the dis-

tance downstream increases [33]. On the other hand, the reason why Brethouwer

and Nieuwstadt [38] r.m.s. profiles do not show peaks can be attributed to the fact

that the size of their source is smaller (0.028δ) than that considered in this study
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(0.054δ).

Figure 6.6: Temperature r.m.s. profiles
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Figure 6.7 shows the mean profiles of the relevant terms of thetime averaged

x-momentum equation (3.40). The numbers in the label of thisfigure indicate the

different terms of the equation 3.40. Note that the terms have been moved to the

right hand side of the equation 3.40 to plot their contribution in figure 6.7. Without

the buoyancy effect, the pressure gradient is balanced by friction on the walls as

it can be seen from integration of the mean momentum equationover the channel

width. Figures 6.8 to 6.10 show the budget of the time averaged thermal energy

equation (3.42) at different three selectedx positions. The mean temperature pro-

files scaled and shifted for clarity have also been included in these figures. It is

important to note that all the relevant terms of the balance equations have been

written on the right hand side so the signs have changed accordingly (see equations

3.40 to 3.47).

The contribution of the different terms to the thermal energy budget atx = 6.0

are shown in figure 6.8. This streamwise position corresponds to the zone where in-
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homogeneities from the walls are not important. The main terms are the streamwise

convective transport and the wall-normal turbulent transport with only a relatively

small contribution of the conductive term along the wall-normal direction. This last

term decreases in magnitude as the distance from the source is increased along the

streamwise direction because the mean temperature gradient decreases as well.

Far from the walls, the turbulent term in the wall-normal direction,∂
(
w′T ′)/∂z,

is zero atz= ±0.17 as shown in figure 6.8. The turbulent heat fluxw′T ′ has zero

value at the walls because there the velocity fluctuations are zero. As it can be

seen in figure 6.8, the gradient ofw′T ′ along the wall-normal direction is negative

from the lower wall up toz = −0.17. This means that, starting from the lower

wall where its flux value is zero,w′T ′ decreases continously reaching a minimum

at z = −0.17. Forz > −0.17 the gradient is positive so the turbulent flux grows

reaching a maximum atz= 0.17. At the upper wall its value in again zero.

This is explained because in the lower half of the channel a positive fluctuation

of w implies the entrainment of fresh cold fluid in the plume and the consequent de-

crease in temperature. Inversely, in the upper half a positive velocity fluctuation of

w produces an increase of the temperature. The streamwise convective term is also

zero atz= ±0.17. This corresponds to the positions where the mean temperature

gradient along the streamwise direction is zero.

The wall-normal diffusion term also vanishes at locationz=±0.17. This imply

that the second derivative for the mean temperature in the wall-normal direction is

zero indicating the inflection point of the profile.

This behavior can also be observed at the other two streamwise positions con-

sidered,x = 12.5 andx = 24.0, and shown in figures 6.9 and 6.10 respectively.

However, as the plume disperses downstream, this position shifts towards the walls.

It is located atz= ±0.26 andz= ±0.4 for x = 12.5 andx = 24.0, respectively.

Figure 6.9 shows the profiles located at the middle of the streamwise dimension

of the computational domain. At this position,x = 12.5, the plume reaches the

walls as can be deduced from the temperature profile as well asthe profiles of the

turbulent transport term. The distribution of the different terms is similar to the

previous one profiles but profiles are wider in the wall-normal direction and their

intensity has decreased.

Figure 6.10 shows the profiles at a streamwise position wherethe walls affect

considerably the plume structure. The streamwise convection and turbulent trans-

port terms are again the most important contributions to thethermal energy budget.
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It is possible to observe two peaks near walls for the normal diffusive term in figure

6.10. This can be explained because near the walls, as it can be observed in fig-

ure 6.10, the molecular conduction is responsible for the decrease of the turbulent

wall-normal transport and, consequently, the conductive transport becomes more

important in the overall balance. This peak of the diffusivewall-normal term is

greater in magnitude than the values found within the flow of the channel.

Figure 6.7: Mean x-momentum transport balance
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Figure 6.8: Mean heat transport balance at x=6.0
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Figure 6.9: Mean heat transport balance at x=12.5
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Figure 6.10: Mean heat transport balance at x=24.0
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6.3 Case B: Mixed convection atReτ = 150and Gr =

9.6 ·105

This flow is also a fully developed turbulent channel flow withthe gravity vec-

tor oppositely aligned with the streamwise direction in a vertical channel. In this

case, the buoyancy term in equation 1.8 is not zero. The reference temperature cor-

responds to the average between the hot and the cold walls fixed atT(x,y,−δ, t) =

T∗
H = 1 andT(x,y,δ, t) = T∗

C = 0 respectively. The buoyancy effect aids or opposes

to the mean pressure gradient depending on the location within the fluid. The molec-

ular Prandtl number is 0.71 and the Grashof number isGr = 9.6 ·105. The size of

the domain is 8πδ × 2πδ × 2δ along the streamwise, spanwise and normal to the

walls directions respectively. The boundary conditions for velocity and pressure

fluctuation are the same as in case A.

The grid resolution is 131× 101 × 101 with a minimum finite volume size

∆z+
min = 0.3 near the walls of the channel. The time step for time integration has

been set to∆t = 1·10−3. The flow statistics have been averaged when the flow was

fully developed during a period of 200 non-dimensional timeunits.

Figure 6.11:Tre f isosurface
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The hydrodynamic variables have been initialized using instantaneous fields of

case A. The temperature field is initialized as a constant temperature field atTre f .

The initialization of temperature field with a linear mean profile between walls has

been observed to demand high computational resources. It has been found that for

mixed convection cases a very large domain is needed in the vertical (streamwise)

direction. If a smaller box is used no quasi-steady conditions are obtained, and

the bulk velocity varies with a very low frequency [43]. The mean temperature

also fluctuates at a very low frequency. The computational requirements increase

with the Grashof number [72]. Among all benchmark cases considered, this one

is the most costly in terms of CPU time since it took a long timeto achieve the

fully developed flow conditions. As an example of the instantaneous temperature

field, figure 6.11 shows the isosurface ofTre f and figure 6.12 shows instantaneous

temperature contours aty = 0. It can be seen in figure 6.12 the hot region in red

(buoyancy aided flow) and the cold in blue (buoyancy opposed flow). It also can

be seen in the central region of the channel the different effect of buoyancy near

the two walls. Note that the color scale is not linear to enhance the details of the

temperature distributions in the central region of the channel where the temperature

differences are small because of the turbulent mixing.

Figure 6.12: Instantaneous temperature field for mixed convection atReτ = 150 and
Gr = 9.6 ·105

Results for the mean and r.m.s. temperature profiles are shown in figure 6.13

and the mean streamwise velocity and r.m.s. profiles are shown in figure 6.14.

The results show a good agreement with those of avaliable literature [73] as

shown in figures 6.13 and 6.14. The mean temperature gradients at the walls are the

same and thus the macroscopic heat balance is satisfied. Somerelevant mean quan-

tities are presented in table 6.1. The values in parenthesescorrespond to DNS results

reported by Davidson et al. [73]. The largest differences between these values are
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Figure 6.13: Mean (a) and r.m.s. (b) temperature profiles
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Table 6.1: Mixed convection relevant quantities

τw,−δ τw,δ Ub Tb u∗ −
(
∂T/∂z

)

w Reb

0.68(0.71) 0.40(0.42) 9.08(9.8) 0.41 0.74(0.75) 2.42(2.31) 2725

smaller than 10% and are found in the bulk velocity (7.9%) and in the averaged heat

flux at the walls (4.8%). The Reynolds number based on the bulk velocity is defined

asReb = Ub2δ/ν.

The time averaged profiles of the mixed convection case, suchas mean temper-

ature and velocity shown in 6.13a and 6.14a respectively, are non-symmetric with

respect to the channel centerz= 0. This implies that buoyancy is not zero at the

center of the channel (z= 0). As it can be seen in figures 6.12 and 6.13a,Tre f is

located closer to the hot wall. The velocity profiles are alsonon-symmetric so the

wall shear stresses at walls are different as indicated in table 6.1.

The hot fluid region located atz<−0.6, experiences a larger velocity associated

with a positive buoyancy force. Inversely, cold fluid moves slower due to negative

buoyancy. The velocity fluctuations are larger near the coldwall as it can be seen in

figure 6.13 while the temperature fluctuations are larger near the hot wall (see figure

6.13b).

To study the effect of numerical diffusion, simulations of the mixed convection

case have been performed using the QUICK scheme [74] for the discretization of
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Figure 6.14: Mean (a) and r.m.s. (b) velocity profiles
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the advective terms. Results are shown in figures 6.15 and 6.16. Numerical dif-

fusion problems are specially important on r.m.s. profiles (figure 6.15b) because

unphysical additional diffusion produces the reduction ofthe turbulent fluctuation

intensities.

Figure 6.17 shows the contribution of the different terms ofthe time averaged

x-momentum budget (equation 3.43).

Figure 6.15: Mean (a) and r.m.s. (b) temperature profiles obtained with QUICK
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The friction at the walls is balanced by the sum of mean pressure gradient and

buoyancy. Whereas the nondimensional mean wall shear stress τw is 1 for the non-

buoyant case, this quantity for the mixed convection case needs to be reformulated
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Figure 6.16: Mean (a) and r.m.s. (b) velocity profiles obtained with QUICK
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asτw = 0.5
(
τw,−δ + τw,δ

)
= ρu2

∗ 6= 1 because of the contribution of the buoyancy

term to the x-momentum equation. Furthermore, whereas without buoyancy, the

turbulent shear stress is linear in the region where viscouseffects are negligible,

this is not valid when buoyancy is included. For comparison,results for the devel-

oped channel flow atReτ = 150 without buoyancy are shown in figure 6.18. The

contributions of the time averaged momentum equations for this fully developed

channel atReτ = 150 and case A are the same so the numbers used to identify the

different terms in figure 6.18 correspond to those used in equation 3.40.

The symmetry with respect to the centerline of the channel (z= 0) for the dif-

ferent terms in the x-momentum equation for the mixed convection case has been

lost in comparison with a non-buoyant case. In order to compare both cases, figure

6.18 shows the profiles for a pressure-driven fully developed channel at Reynolds

numberReτ = 150. The wall-shear stress value has decreased because the pres-

sure gradient is balanced not only by the friction on walls but by both friction and

buoyancy. This is also reflected in the decreasing of the meanviscous stress term.

The mean streamwise velocity profile for case B is asymmetric. Velocity increases

from the hot wall and it reaches its maximum value atz≈ −0.65. The maximum

is reached at the centerline of the symmetric isothermal fully developed channel.

Mean velocity decreases continuously fromz≈−0.65 to the cold wall.

The turbulent flux produced byu′w′ is significantly reduced near the hot wall

(6.17) in comparison with the isothermal case (6.18). It canbe seen that the turbu-

lent flux vanishes at the position where the maximum of velocity occurs.
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The mean buoyancy aids the flow close to the hot wall while opposes it close

the cold wall.

Figure 6.17: Mean momentum transport balance for the mixed convection case
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Figure 6.19 shows the contribution of the different terms ofthe mean temper-

ature equation (3.44). In this case only the turbulent heat flux and the convective

transport of heat have relevance. The first one becomes more important near the

centerline of the channel. Inversely, the convective term is more important near the

walls where the temperature gradient along the wall-normaldirection is larger.

69

UNIVERSITAT ROVIRA I VIRGILI
DIRECT NUMERICAL SIMULATION OF TURBULENT DISPERSION OF BUOYANT PLUMES IN A PRESSURE-DRIVEN CHANNEL FLOW.
Alexandre Fabregat Tomàs
ISBN: 978-84-690-7781-8 / DL: T.1236-2007



Figure 6.18: Mean momentum transport balance for isothermal fully developed
channel flow atReτ = 150
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Figure 6.19: Mean heat transport balance for the mixed convection case
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6.4 Case C: Buoyant source line in a channel atReτ =

180and Gr = 107

The physical model of this case is shown in figure 2.2. The gridused is the

same as that in case A: 258×130×130. Similarly the minimum finite volume size

is ∆z+
min = 0.2 near the walls of the channel and the time step for time integration

has been set to∆t = 5 ·10−4 with an averaging period of 70δ/uτ for the calculation

of the statistics.

This is the same grid resolution of the buffer zone attached at the inlet of the

main domain. The buffer zone is used to generate inlet velocity and pressure fields

for the computational domain of case C because the streamwise direction is not

homogenous. Although this resolution may seem excessive, it allow to optimize the

memory usage by assigning the same memory resources for bothdomains. Note

that in the buffer zone, only continuity and momentum equations are solved.

Case C differs from the case A because momentum and heat are coupled through

the buoyancy effect produced by the hot plume region in a colder background fluid.

The lower density of the plume region forces the flow to rise asit advances along

the channel. The hydrodynamic variables are no longer homogeneous along the

streamwise direction and, consequently, the periodic boundary conditions are not

suitable. To solve this, the buffer region shown in figure 2.2has been attached at

the inlet of the main domain. In this buffer domain, momentumequations for a

developed pressure-driven channel flow are integrated and its outlet velocity field is

used as the inlet boundary condition for the main domain where the buoyant plume

develops.

As an example of the instantaneous temperature field figure 6.20 shows contours

of temperature at different streamwise positions. The meanand r.m.s profiles for the

streamwise component of the velocity vector inδ-scaled and wall coordinates are

shown in figure 6.22 for three selected locations along the streamwise direction;

near the inlet atx = 6.0, in the middle of the channel length atx = 12.5 and near

the outlet atx = 24.0. The mean velocity and r.m.s. profiles for the case A (non-

buoyant case) are included in figure 6.22 for comparison purposes. It is important

to note that when the buoyancy is considered, symmetry is lost and different friction

velocities and wall-coordinate scales are obtained for thetwo walls.
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Table 6.2: Friction velocity and wall shear stress for case C

Wall 〈uτ〉 〈τw〉
Top 1.07 1.14

Bottom 0.99 0.97

Table 6.2 shows the averaged friction velocities at the top and bottom walls. It

can be seen that the wall shear stress is larger at the top wallthan at the bottom

wall because of the deflection of the plume towards the top wall. It can be seen in

figure 6.22a that the averaged velocity profile forz< 0 scaled with the local friction

velocity at the bottom wall agrees with the isothermal velocity profile while near the

top wall (z> 0), where buoyancy considerably affects the flow, the profileexhibits

lower values of the mean velocity. Inδ-scaled coordinates it can be seen in figure

6.22b how the mean velocity decreases in the center of the channel (the maximum

value has drifted towards the top wall) while it increases near the top wall.

Figure 6.20: Instantaneous temperature contours at different streamwise positions

The mean wall-normal velocity component is shown in figure 6.23a. The w-

component has very small values compared with its r.m.s. (figure 6.23b). In the

mean field the flow is moving upwards very slowly and consequently the variation

of the u-component mean profile along the channel is also small. However, it is

important to note how r.m.s. values for the u-component grownear the upper wall as

the streamwise position is increased as shown in figure 6.22c. Fluctuation intensities
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of u andw are larger in the middle of the channel (x = 12.5) than close to the outlet

(x = 24.0). See for example figure 6.20. A similar tendency can be observed in the

meanw component. This can be explained considering that atx = 12.5 the plume

is moving upwards to the top wall and its development is very intense (see figure

6.20). Close to the outlet (x= 24.0), the plume is attached to the upper wall and the

mean vertical velocityw is lower as it can be seen in figure 6.23a.

To clarify this point, the mean temperature field and the three selected positions

are shown in figure 6.21. The mean temperature field identifiesclearer the different

stages of the buoyant plume along the channel. Close to the inlet,x= 6.0, buoyancy

starts to deflect the plume towards the upper wall. At the middle of the channel,x=

12.5, buoyancy effects moves the plume upwards but it is not completely attached

to the wall. Finally, atx = 24.0, the plume reaches the top wall and approaches to

its developed regime.

Figure 6.21: Mean temperature field for case C

The mean temperature profiles for the selected locations areshown on figure

6.24a. The typical Gaussian bell profile associated with themean scalar concen-

tration (without wall effects) can be seen here for locations close to the inlet but

displaced to the top wall due to the buoyancy effect.

The profiles of the temperature fluctuation intensities (seefigure 6.24b) show

a similar tendency with to respect the centerline. Two peaksare present even for

advanced locations but symmetry with respect toz = 0 is not found. Compared

with case A, buoyancy affects the mean temperature profile bydeflecting the plume

towards the upper wall while reduces the maximum intensities and increases its

width. In a similar way, the two peaks in the fluctuation intensity profiles are not

symmetrically distributed as they were in the case A. In the upper zone of the plume

the r.m.s. values are of the same order of magnitude in case A while they decrease
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in the lower region. Atx = 12.5 the behavior of the r.m.s. is similar but atx = 24.0

the r.m.s. values are higher in the lower part of the plume. This can be explained by

the damping effect of the wall on the turbulence intensity.

Figure 6.22: Mean (a) and r.m.s. (b) u-component profiles
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The figures 6.25 to 6.33 show the profiles of the different terms of the time

averaged x-momentum, z-momentum and heat transport equations 3.45, 3.46 and

3.47 respectively. Figures 6.25, 6.26 and 6.27 show the terms of the x-momentum

equation at the streamwise positionsx = 6.0, x = 12.5 andx = 24.0 respectively.

The number in the labels of these figures identifies the different terms of equation
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Figure 6.23: Mean (a) and r.m.s. (b) w-component profiles
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3.45

Unlike cases A and B, the momentum and heat transport equations of case C are

not homogeneous along the streamwise direction and the integration along the wall-

normal direction is not possible. Consequently, profiles correspond to the different

terms of equations 3.45 to 3.47.

Near the inlet, atx = 6.0 (figure 6.25), the pressure gradient is balanced mainly

by the streamwise convection and the wall-normal turbulentterms in the central

region of the flow. Near the walls, the wall-normal diffusioncontributes to balance

the wall-normal turbulent transport and the pressure gradient.

At x= 12.5 (figure 6.26), the situation is similar to that corresponding tox= 6.0.

However, the two main contributions, the wall-normal diffusion and the wall-normal

turbulent flux, increased in magnitude close to the top wall.Furthermore, in the

upper region both the contributions of the convective termsin the streamwise and

wall-normal directions are increased because of the plume defection. As it was seen

for the mean velocity and r.m.s. profiles, at this position the plume development is

very intense. The mean streamwise velocity component is slightly larger close to

the top wall and the vertical mean velocity component exhibit a small positive value.

At x = 24.0 (figure 6.27), the plume has already reached the upper wall and

the contribution of the convective terms decrease but they have still significative

values. The two main contributions (the wall-normal diffusion and the wall-normal
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Figure 6.24: Mean (a) and r.m.s. (b) temperature profiles
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turbulent flux) profiles are similar to those found atx = 6.0 but their magnitude has

increased near the top wall and decreased slightly near the bottom one.

Figures 6.28, 6.29 and 6.30 show the contribution of the terms of the time aver-

aged z-momentum equation. The number in the labels of these figures identifies the

different terms of equation 3.46.

The main terms in the budget are the pressure gradient, the wall-normal turbu-

lent flux and the buoyancy. The convective and diffusive terms in the normal and

streamwise directions are insignificant compared with the previous contributions. It

is important to remember that the mean positive value ofw is relatively small.

It should be noted that the buoyancy term is proportional to the mean tempera-

ture profile. The plume drifts towards the top wall as the position in the streamwise

direction is increased and the buoyancy term profile maximummoves upwards ac-
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Figure 6.25: Mean x-momentum transport balance at x=6.0
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cording to this. Atx = 6.0 the plume deflection is not important and the buoyancy

term has a maximum close to the center of the channel (z= 0) while its value close

to the walls is insignificant. In the central region of the channel the pressure gra-

dient is the main contribution balancing the buoyancy and, close to the walls, it

balances the wall-normal turbulent contribution. For locations farther from the wall

the wall-normal turbulent profile in the center of the channel become smoother in

comparison withx = 6.0. The maximum value for the buoyancy, according to the

mean temperature profile, has shifted upwards reaching the wall at x = 12.5. The

pressure gradient term is antisymmetric respect to the buoyancy term because the

wall-normal turbulent contribution is small compared withthe other two in the cen-

tral region of the channel. Close to the source, atx = 24.0, the plume is already

attached to the top wall. The wall-normal turbulent term profile is very smooth and

is significant only close to the walls. The buoyancy contribution, proportional to the

mean temperature, is always zero near the bottom wall.

Figures 6.31 to 6.33 show the contribution of the different terms of the time

averaged heat equation.

The contributions of the mean terms to the heat equation nearthe inlet are sim-

ilar to those corresponding to the case A but deflected towards the top wall. The

most important contributions are the streamwise convective and the wall-normal
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Figure 6.26: Mean x-momentum transport balance at x=12.5
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turbulent heat flux.

Close to the source, atx = 6.0, the two main contributions profiles are very

similar to those found in the case A (non-buoyant) in the central region of the chan-

nel. However, their magnitude increases close to the top wall and decreases close

to the bottom one. This can be explained because of the plume deflection and the

increase of the mean streamwise velocity near the top wall. The turbulent flux con-

tribution in the upper zone of the channel has to be larger than that at the lower

one since this quantity is zero at walls and its gradient in the wall-normal direction

have to be larger in the upper zone. There is a small contribution of the wall-normal

diffusion term specially significant in the central region of the channel. Once the

plume reaches the top wall, at approximatelyx = 12.5, the absolute magnitude of

the streamwise convective and the wall-normal turbulent flux terms in the region

close to the top wall are as large as in the center of the channel. As it is observed

in the non-buoyant case, the wall-normal diffusive term become significant near the

top wall. The plume never reaches the bottom wall, so this term is not significant

there. It is important to note that the position at which the buoyant plume reaches

the top wall is smaller than that for the non-buoyant case. Close to the outlet, the

wall-normal conductive contribution becomes more important and the wall-normal

convective term become significant as well.
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Figure 6.27: Mean x-momentum transport balance at x=24.0
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Due to the buoyancy forces acting in the wall-normal direction, case C is the

only case considered with a non-fully developed dynamic field. Along the stream-

wise direction the pressure forces resulting from the mean pressure gradient are bal-

anced by friction at walls. For case C, the term corresponding to the non-developed

mean pressure gradient along the streamwise direction may be different from zero

because of the development of the plume (see term 3 in the equation 3.45 for a de-

composition of the mean pressure gradient into a developed and a non-developed

contributions). The values for this term are less than 7% of the mean pressure gra-

dient. Therefore this evolution has to be reflected on the quantities related with the

friction on walls. Figure 6.34 shows the profiles of the localfriction velocity on

both walls along the streamwise direction.

When the plume reaches the top wall atx≈ 16, the shear stress and consequently

its friction velocity, increase. The position for the maximum in this profile points

out the location where the plume experiences the most intense evolution. After

attaching the wall, the flow decelerates and the friction velocity decreases. On the

other hand, on the lower wall the shear stress and the friction velocity decrease

slightly. It can be seen that the size of the domain along the streamwise direction

is not long enough for the flow to reach the fully developed state. At this stage,

both shear stresses at the two walls would be constant and their mean would permit
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Figure 6.28: Mean z-momentum transport balance at x=6.0
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to obtain the corresponding friction velocity value that would balance the constant

mean pressure gradient. That friction velocity can be expressed as:

u∗τ =

√

1
2Reτ

(
∂U∗

∂z∗

∣
∣
∣
∣
b
+

∂U∗

∂z∗

∣
∣
∣
∣
t

)

(6.3)

where subscriptsb andt stand forbottomandtopwalls.
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Figure 6.29: Mean z-momentum transport balance at x=12.5
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Figure 6.30: Mean z-momentum transport balance at x=24.0
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Figure 6.31: Mean heat transport balance at x=6.0
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Figure 6.32: Mean heat transport balance at x=12.5
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Figure 6.33: Mean heat transport balance at x=24.0
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Figure 6.34: Profile ofuτ on both walls
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Chapter 7

Preliminary results of a turbulent

reacting flow

The configuration presented in case A was used to study the turbulent disper-

sion in a channel where a reactive is released through the line source within a back-

ground flow carrying another reactive. Both species react toproduce the product P

following a second order reaction (A+B−→ P). Such reaction is assumed to occur

under isothermal conditions (the heat of reaction is zero) so there are no buoyancy

forces. The concentration at the inlet (the source line) forthe reactant A is set

to CA(0,y,±HS, t) = 1 ∀ z∈ [−HS,HS] andCA(0,y,z, t) = 0 ∀ z∋ [−HS,HS] with

HS = 0.054δ. The concentration of B in the background flow isCB(0,y,z, t) = 0.05

while the product P concentration at the inlet is zeroCP(0,y,z, t) = 0. Reactants

enter the channel premixed so the chemical reaction takes place from the inlet of

the channel.

The grid resolution used in this case is the same that was usedfor case A.

The concentration fields have been initialized with a constant background con-

centration ofCB(x,y,z,0) = 0.05 andCA(x,y,z,0) = CP(x,y,z,0) = 0. When the

reactive plume is developed, the sampling procedure to compute the flow statistics

has been started. The time-averaged quantities have been obtained with a sampling

period of 23δ/uτ and consequently the mean results shown in this section havenot

completely converged.

The time averaged equation 1.21 for a second-order chemicalreactive system

can be written as:
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∂Cα
∂t

+U j
∂Cα
∂x j

=
1

ReτSc
∂2Cα

∂x j∂x j
−

∂C′
αu′j

∂x j
±Da

(

CACB +C′
AC′

B

)

(7.1)

The symbolα denotes any of the species involved in the chemical reaction.

A and B are the reactants so the sign of the last term on the right hand side of

the equation 7.1 which is the reaction term, is negative so that species are being

consumed. Whenα refers to the product P, the sign of this term is positive, so

P is generated. The Schmidt number isSc= 1 for all the species. The reaction

term is constituted by the mean reaction rateDaCACB and the turbulent contribution

DaC′
AC′

B. This turbulent contribution appears for orders of reaction larger than 1.

The Damkhöler number has been set to 1 so the turbulent and the reactive tem-

poral scales are of the same order. When the Damkhöler number is small, the reac-

tion rate is slow compared to the large scale processes of turbulent mixing and the

system can be considered premixed. In this case the reactiontakes place distributed

over the whole domain and reaction rates are determined purely by the chemical ki-

netics. On the other hand, when the Damkhöler number is large, even with respect

to the Kolmogorov time scale of the flow, the reaction occurs instantaneously as

soon as the reactants meet each other at the molecular scale.When the reactants are

introduced segregated, the reaction usually occurs in formof thin reacting sheets,

which form the interface between regions of reactants. These sheets are moved

around and strained by the turbulent flow. The rate of reaction is, in this case, deter-

mined by the amount of mixing at the molecular scale and for this reason it is said

that the reaction is diffusion limited. Intermediate values of the Damkhöler number

produce reaction rates determined both by the turbulent mixing and by the chemical

kinetics.

Figures 7.1, 7.2 and 7.3 show contours of the averaged concentration fields for

the three species involved in the reaction. The color scaleshave been chosen to en-

hance the details of the concentration interfaces. As it canbe seen, the reactant B or

the product P mean concentration fields (see figure 7.2 and 7.3respectively), reac-

tion takes place from the channel inlet because reactants enter the domain premixed.

The values of the chemical conversion, defined in equation 7.2, at the channel outlet

are around 10%.

X(%) =
FA
∣
∣
x=0− FA

∣
∣
x=Lx

FA
∣
∣
x=0

×100 (7.2)
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whereFα is the time averaged mass flow defined as:

Fα =
1
2δ

Z δ

−δ
CαUdz (7.3)

Figure 7.1: Mean reactant A concentration field

Figure 7.2: Mean reactant B concentration field

The relevant terms of the averaged momentum transport equation are the same

as those presented in equation 3.40 for the case A in section 3. Although periodic

boundary conditions for the streamwise direction are the obvious choice for the

momentum quantities, the buffer region at the inlet of the computational domain was

kept to check that non-reflecting boundary conditions applied over the momentum

equations have no effect on the results. The balance of the x-momentum equation

is shown in figure 7.4. The numbers used to identify the different contributions

correspond to those used in equation 3.40.

The relevant terms of the mean concentration transport equation 7.1 can be writ-

ten as:
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Figure 7.3: Mean product P concentration field

Figure 7.4: Mean momentum transport balance (reactive case)
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0 = −U
∂Cα
∂x

︸ ︷︷ ︸

1

+
1

ReτSc
∂2Cα
∂x2

︸ ︷︷ ︸

2

+
1

ReτSc
∂2Cα
∂z2

︸ ︷︷ ︸

3

−

∂
∂x

(
C′

αu′
)

︸ ︷︷ ︸

4

− ∂
∂z

(
C′

αw′)

︸ ︷︷ ︸

5

±Da
(

CACB+C′
AC′

B

)

︸ ︷︷ ︸

6

(7.4)

The contribution of the different terms of the equation 7.4 for reactant A is

shown in figure 7.5 at three selected streamwise positions. These profiles are very

similar to those presented for the scalar concentration forcase A. The reaction term
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is much smaller than the terms corresponding to the streamwise convection, the

wall-normal turbulent flux and the wall-normal diffusion. The reaction advances as

one moves downstream along the channel but, even atx = 24.0, the reaction term

represents only a very small contribution to the budget of reactive A. It is obvious

that at larger Damkhöler numbers this term would be larger but the problem would

be more difficult to solve because the smaller time scales forthe reactive transport

equations would demand time-splitting schemes to capture the fastchemical reac-

tion.

The time averaged balance for reactant B is shown in figure 7.6. In this case

the reaction term become the most important contribution tothe mean transport

equation. The small magnitude of the value of the relevant terms make clear the

need for larger averaging time, specially at downstream positions. In spite of this,

the time averaged overall mass balance is fairly well satisfied.

Finally, the balance for the product P is shown in figure 7.7. As it happened

for reactive B, the reaction term is the most important but the magnitude of the

values of the relevant terms are small. As it was expected, the results for the mean

relevant terms of equation 7.4 for the reactant B and productP are relative similar

but antisymmetric with respect toz = 0. In the reacting plume, the product P is

being generated at the same rate as reactant B is being consumed by the chemical

reaction. This imply that the gradients have opposite signsso the convective and

turbulent terms are antisymmetric. The same happens with the second derivative

for the diffusive term and obviously for the reactive term aswell.
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Figure 7.5: Mean reactant A transport balance at x=6.0, x=12.5 and x=24.0
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Figure 7.6: Mean reactant B transport balance at x=6.0, x=12.5 and x=24.0
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Figure 7.7: Mean product P transport balance at x=6.0, x=12.5 and x=24.0
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Chapter 8

Conclusions

8.1 Multigrid techniques

Multigrid has demonstrated to be the best option for solvingPoisson type equa-

tions. This solver consumed CPU times one order of magnitudesmaller than the

conjugate gradient methods for all the cases studied. The cases considered included

two synthetic cases with Dirichlet and Neumann boundary conditions with uniform

and non-uniform grids and the pressure calculation case fora fully developed chan-

nel flow.

On the other hand, the scalability of multigrid is lower thanthat corresponding

to conjugate gradient methods. The reason lies in the large communication require-

ments, specially at the beggining of the Full-Multigrid Algorithm where adequate

initial solutions have to be found to initialize the smoother (SOR) step in each grid

level. Using 8 processes, the typical value ofspeed-upfor any of the synthetic cases

for multigrid is between 2 and 3 while it ranges between 4 and 6for conjugate gra-

dient methods. For uniform grids the CG method requires smaller CPU times than

Bi-CGSTAB although thespeed-upis better than that for CG. For non-uniform

grids the situation is opposite. The Bi-CGSTAB, more suitable for non-symmetric

matrices, is between 1.1 and 1.7 times faster than CG although, in terms ofspeed-

up, the CG exhibit better performance. Scalability differences between CG and

Bi-CGSTAB were observed to be small for Neumann boundary conditions and for

uniform and non-uniform grids while they were significant for Dirichlet boundary

conditions.

For the pressure calculation of the turbulent flow in a fully developed channel,
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the CPU times for all three solvers were larger in comparisonwith the synthetic

cases because the channel grid resolution is double than that used in the synthetic

cases (258×130×130 and 130×130×130 grid points respectively). Furthermore,

the source terms for the synthetic cases and the fully-developed channel flow are

very different in terms of complexity. In fact, for the last one, the source term of

the Poisson equation shows a large range of scales because itis associated with a

turbulent velocity field. In contrast, the source term of thesynthetic cases is very

smooth.

For instance, the CPU time in arbitrary units for the synthetic case with Neu-

mann boundary conditions and a non-uniform grid with a stretching factor ofr =

1.01 (which is the most similar to the pressure calculation in term of boundary

conditions type and grid stretching) using 8 processes is 1 for CG and 0.5 for Bi-

CGSTAB. For the pressure calculation in the fully developedchannel flow, the CPU

times in the same arbritrary units are approximately 1.5 for Bi-CGSTAB and 8.0 for

CG. For multigrid, the synthetic case takes 0.04 time units and for the pressure cal-

culation in the developed channel flow takes 0.4 time units.

8.2 Channel flow configurations

To check the accuracy of the computational code, the mean velocity, fluctuation

intensities and friction coefficients of a fully developed channel flow atReτ = 150

have been compared successfully with existing data.

Results of the fully developed channel flow atReτ = 180 with a scalar source

line vertically centered at the inlet of the channel also showed good agreement with

DNS and experiments avaliable in the literature. The temperature r.m.s. profiles

showed the two peaks associated with the inhomogeneity created by the walls of

the channel flow at downstream positions away from the sourceline. The TVD

discretization of the non-linear advective terms avoids the non-physical scalar con-

centration values associated with the sharp scalar gradients regions close the source.

The budget for the time averaged heat transport equation shows the contribu-

tions of the different relevant terms as the plume disperses. Close to the source the

main terms are the streamwise convection and the diffusive and turbulent flux in the

wall-normal direction. The diffusion and turbulent transport in the streamwise di-
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rection have no significant contributions. At this location, the profiles for the three

main contributions are zero atz= ±0.17δ wherez= 0 is the center of the channel

andδ is the channel half width. These positions are where the gradient of the mean

temperature with respect to the streamwise direction is zero and the position of the

inflection point of the mean temperature profile in the wall-normal direction. This

location approaches to the wall at larger streamwise positions. The magnitude of

the contributions decreases as the position in the streamwise direction increases and

the plume disperses. When the plume reaches the walls the wall-normal molecular

diffusion shows significant values close to them.

The simulation of the mixed convection flow atReτ = 150 andGr = 9.6 ·105

showed low-frequency fluctuations in the mean temperature and bulk velocity and

required a large channel length (8πδ) and a large sampling time period to converge

the statistic quantities. The numerical diffusion associated with theupwindmethods

has been quantified comparing the QUICK and the central discretization scheme for

the non-linear advective terms. It has been shown the damping of the fluctuation in-

tensities and the consequent lower values for the r.m.s. profiles when using QUICK.

The results of this simulation showed also good agreement with previous DNS data.

The aiding and opposing effects of the buoyancy on the flow driven mainly

by a mean pressure gradient produce an increase of velocities and a decrease of

the fluctuation intensities close to the hot wall. Oppositely, close to the cold wall,

velocities are decreased and r.m.s. increased. The reference temperature, defined

as the average between the temperatures of the walls (fluid aTre f experiences no

buoyancy), lies closer to the hot wall.

The budgets of the time averaged x-momentum and heat transport equations

show that the turbulent transport in the direction normal tothe wall has large values

near the cold wall but is decreased near the hot one. Oppositely, the viscous stresses

are larger near the hot wall and are decreased near the cold one.

The simulation of a buoyant plume required a buffer region toprovide adequate

boundary conditions. This increased the computational requirements significantly.

The buoyancy forces drifted the temperature plume towards the top wall. This de-

flection produces positive values of the time averaged vertical velocity component

which are small in comparison with its fluctuation intensity. The mean velocity pro-

files of the streamwise velocity component near the bottom wall collapsed on the
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universal profile using the wall scaling. However the profiles close to the top wall

show smaller values of the streamwise velocity component inthe central region

of the channel. The fluctuation intensities of the streamwise velocity component

are increased near the top wall and slightly decreased near the bottom one. The

evolution of the mean velocity profiles at different positions in the streamwise di-

rection show that atx = 12.5δ the plume evolves faster than close to the outlet and

its development is more intense. In fact, the plume reaches the top wall near this

position where the local friction velocity on the top wall has a maximum. On the

other hand, the local friction velocity of the bottom wall decreases monotonically

as the streamwise position is increased. The value of the mean pressure fluctuation

gradient arising from the developing conditions of the flow is less than 7% of the

mean pressure gradient. Its contribution to the mean x-momentum balance is small

compared with other terms.

The mean temperature profiles at different streamwise positions show maxima

near the top wall as the plume is deflected upwards The maximumvalue of the

mean temperature profile is decreased as the position along the streamwise direc-

tion is increased and the width of the profile (associated with the plume vertical

dispersion) is increased. This can be explained considering the vertical movement

imposed by the plume deflection. The vertical plume dispersion is produced by the

advective and diffusive transport mechanisms and it is enhanced in comparison with

the non-buoyant case by the buoyancy effect. The r.m.s. profiles for temperature

for the non-buoyant case showed two peaks symmetrically located aroundz= 0. In

the buoyant case this symmetry does not exist and the intensity of fluctuations is

decreased at locations far from the source. Near the source,the upper peak which

is located close to the top wall is larger than that corresponding to the non-buoyant

case.

The budget for the time averaged x-momentum transport equation shows that the

wall-normal viscous and turbulent flux terms are the main contributions. Near the

position where the plume reaches the top wall and evolves faster, the wall-normal

and streamwise convective terms become significant contributions near the top wall

but they are decreased near the channel outlet when the plumeis already attached to

the wall. Close to the inlet, the wall-normal viscous and turbulent flux terms have

similar values for both regions close to the walls but farther they decrease close to
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the bottom wall and they increase close to the top one.

The relatively small positive value of the mean vertical velocity component ex-

plains the small contributions of the wall-normal convective and diffusive terms to

the budget of the mean z-momentum transport equations. The buoyancy contribu-

tion, proportional to the mean temperature, is important and its maximum moves

upwards as the position in the streamwise direction is increased. This term is al-

ways zero near the bottom wall because of the plume deflectiontowards the top

wall. The pressure gradient evolves along the streamwise direction balancing the

contribution of the buoyancy together with the wall-normalturbulent term.

The profiles for the mean heat transport equation contributions are similar to

those at the non-buoyant case. Close to the source, the two main contributions, the

streamwise convective term and the wall-normal turbulent flux, are very similar to

those found in the non-buoyant case in the central region of the channel. The tur-

bulent flux term in the upper zone of the channel close to the top wall is larger than

that of the lower one since this quantity is zero at walls and its gradient in the wall-

normal direction has to be larger in the upper zone. There is asmall contribution

of the wall-normal diffusion term specially significant in the central region of the

channel. Once the plume reaches the top wall, the magnitude of the streamwise con-

vective and the wall-normal turbulent flux terms in the region close to the top wall

are as large as in the center of the channel. As it is observed in the non-buoyant

case, the wall-normal diffusive term becomes significant near the top wall. The

plume does not reach the bottom wall, and consequently this term in not important

in this region. Close to the outlet, the wall-normal conductive contribution becomes

more important and the wall-normal convective term becomessignificant as well.

Preliminary results of a turbulent reactive flow in a fully developed channel

have been also reported. The contributions of the differentterms of the time av-

eraged budget of the concentration of the chemical species show that for the most

concentrated reactive (introduced through the line source) the reaction term is not

important in comparison with the streamwise convection, the wall-normal turbulent

term and the wall-normal diffusion. The molecular diffusion term increases near

the walls where the plume reaches the walls. However the reaction terms of the

budgets of the diluted reactive and the product have an important contribution in
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comparison with the other terms.
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Chapter 9

Future work

The simulations performed in this work have considered different channel flow

configurations involving heat and mass turbulent transportfrom discrete and wall

sources. These flows are complex because transport of momentum, heat and mass

can be coupled and the equations governing the flow depend on various parameters.

This type of flow can be easily found in different industrial and environmental appli-

cations including combustion, electronic device cooling or atmospheric dispersion.

The results shown in this work were obtained using Direct Numerical Simula-

tions which provides detailed information about the turbulent transport of momen-

tum, heat and mass. However, in real world applications, this type of tools were not

often suitable to provide answers due to prohibitive computational requirements.

This could be the case of very large Reynolds numbers as thosefound in atmo-

spheric boundary layer. Keeping this in mind, the future work issues providing

continuity to this work, can be summarized as:

• Study the effect of the non-dimensional parameters (Grashof, Reynolds and

Prandtl numbers) on the turbulent transfer of quantities for cases B and C.

These parameters affect the ratio between the buoyancy force and the viscous

force, the ratio between inertial forces and viscous forcesand the ratio of mo-

mentum and thermal diffusivities, respectively. Probablya parametric study

changing the Grashof number would be interesting because ithas a main role

in the development of the buoyant plume in case C. It is important to note that

larger Grashof numbers imply larger computational resources.

• Simulate different chemical reaction mechanisms with or without heat gen-

eration effects and implement the dependence of reaction rate and the heat
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of reaction on temperature. In practice, the heat of reaction and the reaction

kinetics constants depend on temperature. This effect can be studied in order

to simulate real reactive systems.

• Filter the DNS to study the sub-grid scale effects on the flow and develop and

propose subgrid scale (SGS) models for buoyant and/or reactive systems in

wall-bounded flows.

• Built a computational atmospheric boundary layer scenariointroducing ru-

gosities for different types of terrain to study its effect on the dispersion of re-

active contaminants released in the lower atmosphere. Thismodel may allow

to introduce different atmospheric conditions and other effects like radiation

that can affect the reaction rates. This simulation would require a valid SGS

model to simulate flows at very large Reynolds numbers as those found at the

atmospheric boundary layer.

From a computational performance point of view, possible improvements for

the current CFD code can include:

• Implement an adaptative grid refinement approach to optimize computational

resources by using different grid resolutions according with the different mul-

tiscale turbulent features involved in the line source dispersion processes. A

very fine grid can be used in the regions close to the source where the gradi-

ents are larger. This fine grid is embedded in progressively coarser grid levels

for locations far from the source where gradients are not so important.

• Implement the multigrid strategy to solve the whole set of transport equations

adapting the parallel multigrid solver that is being used for the numerical

solution of the Poisson equation for the pressure calculation.
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